Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Postnatal hypothalamic–pituitary–adrenal function in sheep is influenced by age and sex, but not by prenatal growth restriction

Jacqueline M. Wallace A C , John S. Milne A , Lucy R. Green B and Raymond P. Aitken A
+ Author Affiliations
- Author Affiliations

A Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen, AB21 9SB, UK.

B Institute of Developmental Sciences, 887 Southampton General Hospital,Tremona Road, Southampton, SO16 6YD, UK.

C Corresponding author. Email: jacqueline.wallace@abdn.ac.uk

Reproduction, Fertility and Development 23(2) 275-284 https://doi.org/10.1071/RD10103
Submitted: 12 May 2010  Accepted: 29 June 2010   Published: 4 January 2011

Abstract

The relationship between impaired fetal nutrient supply and postnatal hypothalamic–pituitary–adrenal (HPA) function was examined in ovine models of prenatal growth restriction (GR) caused by small placental size (SP) or by maternal undernutrition (UN). Adrenocorticotrophin (ACTH) and cortisol responses following corticotrophin-releasing hormone (CRH) plus arginine vasopressin (AVP) challenge were examined at 9, 18 and 24 months in growth-restricted (GR-SP) and normal birthweight (control) females (Experiment 1), and at 6 months in growth-restricted (GR-SP, GR-UN) and normal weight males and females (Experiment 2). In Experiment 1, GR-SP offspring were born early, were 40% lighter at birth and had higher fractional weight gains to weaning than control offspring. Baseline ACTH and cortisol were independent of GR and cortisol decreased with age. GR did not affect the HPA response to CRH + AVP challenge at any stage, but ACTH increased with age. In Experiment 2, birthweight was greater in control offspring than in GR-UN offspring, which had a higher birthweight again compared with GR-SP offspring. Only the latter group was born early and exhibited rapid catch-up growth to weaning. Neither nutritional route to GR altered HPA function at 6 months. Males grew faster than females and HPA responses after stimulation were lower in males. Together, the results of these studies demonstrate that postnatal HPA function in sheep is influenced by age and sex, but not by GR.

Additional keywords: developmental programming, fetal growth, hypothalamic–pituitary–adrenal axis, stress.


References

Agriculture and Food Research Council (AFRC) (1993). ‘Energy and Protein Requirements of Ruminants. An advisory manual Prepared by the AFRC Technical Committee on Responses to Nutrients.’ (CAB International: Wallingford, UK.)

Andrew, R., Phillips, D. I. W., and Walker, B. R. (1998). Obesity and gender influence cortisol secretion and metabolism in man. J. Clin. Endocrinol. Metab. 83, 1806–1809.
Obesity and gender influence cortisol secretion and metabolism in man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtF2gsbw%3D&md5=fdbd97c1df69d7ab92c84bff8872a267CAS | 9589697PubMed |

Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A., and Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938–941.
Fetal nutrition and cardiovascular disease in adult life.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3htFaisQ%3D%3D&md5=4ebccd9cd1ad84beb3d3cff3a0579037CAS | 8096277PubMed |

Barker, D. J. P., Osmond, C., Kajantie, E., and Eriksson, J. G. (2009). Growth and chronic disease: findings in the Helsinki birth cohort. Ann. Hum. Biol. 36, 445–458.
Growth and chronic disease: findings in the Helsinki birth cohort.Crossref | GoogleScholarGoogle Scholar | 19562567PubMed |

Björntorp, P., and Rosmond, R. (2000). Obesity and cortisol. Nutrition 16, 924–936.
Obesity and cortisol.Crossref | GoogleScholarGoogle Scholar | 11054598PubMed |

Bloomfield, F. H., Oliver, M. H., Hawkins, P., Campbell, M., Phillips, D. J., Gluckman, P. D., Challis, J. R., and Harding, J. E. (2003a). A periconceptual nutritional origin for non-infectious preterm birth. Science 300, 606.
A periconceptual nutritional origin for non-infectious preterm birth.Crossref | GoogleScholarGoogle Scholar | 12714735PubMed |

Bloomfield, F. H., Oliver, M. H., Giannoulias, D., Gluckman, P. D., Harding, J. E., and Challis, J. R. G. (2003b). Brief undernutrition in late-gestation sheep programs the hypothalamic–pituitary–adrenal axis in adult offspring. Endocrinology 144, 2933–2940.
Brief undernutrition in late-gestation sheep programs the hypothalamic–pituitary–adrenal axis in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvF2ktro%3D&md5=447a224d8db4df8111fb34f3a6b5c803CAS | 12810548PubMed |

Bloomfield, F. H., Oliver, M. H., Hawkins, P., Holloway, A. C., Campbell, M., Gluckman, P. D., Harding, J. E., and Challis, J. R. G. (2004). Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic–pituitary–adrenal axis in late gestation. Endocrinology 145, 4278–4285.
Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic–pituitary–adrenal axis in late gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1CitL8%3D&md5=8f63ac19a72c0d2dbd699f5a9a5d979cCAS | 15205376PubMed |

Caton, J. S., Reed, J. J., Aitken, R. P., Milne, J. S., Borowicz, P. P., Reynolds, L. P., Redmer, D. A., and Wallace, J. M. (2009). Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs. J. Anim. Sci. 87, 222–235.
Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFOltg%3D%3D&md5=e87f5e131493f0d2ee57579fd93c8263CAS | 18791144PubMed |

Chadio, S. E., Kotsampasi, B., Papadomichelakis, G., Deligeorgis, S., Kalogiannis, D., Menegatos, I., and Zervas, G. (2007). Impact of maternal undernutrition on the hypothalamic–pituitary–adrenal axis responsiveness in sheep at different ages postnatal. J. Endo. 192, 495–503..
| 1:CAS:528:DC%2BD2sXktFGmsLo%3D&md5=3016b7ba7656b9e667758562e60327ceCAS |

De Blasio, M. J., Gatford, K. L., McMillan, C., Robinson, J. S., and Owens, J. A. (2007). Placental restriction of fetal growth increases insulin action, growth and adiposity in the young lamb. Endocrinology 148, 1350–1358.
Placental restriction of fetal growth increases insulin action, growth and adiposity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWntr8%3D&md5=c715d6e3e3bb1df0051ffadf91823719CAS | 17110432PubMed |

Economides, D. L., Nicolaides, K. H., Linton, E. A., Perry, L. A., and Chard, T. (1988). Plasma cortisol and adrencorticotrophin in appropriate and small for gestational age fetuses. Fetal Ther. 3, 158–164.
Plasma cortisol and adrencorticotrophin in appropriate and small for gestational age fetuses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2Flt1Krsg%3D%3D&md5=e1fce05983cb47afbea2e88b8f35e8f1CAS | 2855870PubMed |

Edwards, L. J., and McMillen, I. C. (2002). Impact of maternal undernutrition during the periconceptual period, fetal number, and fetal sex on the development of the hypothalamic–pituitary–adrenal axis in sheep during late gestation. Biol. Reprod. 66, 1562–1569.
Impact of maternal undernutrition during the periconceptual period, fetal number, and fetal sex on the development of the hypothalamic–pituitary–adrenal axis in sheep during late gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWnsLY%3D&md5=afa47ee3a2b4291c46deae4579ad5dd2CAS | 11967224PubMed |

Gardner, D. S., Fletcher, A. J., Fowden, A. L., and Giussani, D. A. (2001). Plasma adrenocorticotrophin and cortisol concentrations during acute hypoxemia after a reversible period of adverse intrauterine conditions in the ovine fetus during late gestation. Endocrinology 142, 589–598.
Plasma adrenocorticotrophin and cortisol concentrations during acute hypoxemia after a reversible period of adverse intrauterine conditions in the ovine fetus during late gestation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFSrs70%3D&md5=4d2e6996b2f4043bb950686d26bbd0ddCAS | 11159829PubMed |

Gardner, D. S., Van Bon, B. W. M., Dandrea, J., Goddard, P. J., May, S. F., Wilson, V., Stephenson, T., and Symonds, M. E. (2006). Effect of periconceptual undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep. J. Endo. 190, 203–212..
| 1:CAS:528:DC%2BD28Xpt1Wjtrc%3D&md5=44e7cd1630380dfc8721c14ab776232fCAS |

Hawkins, P., Steyn, C., McGarrigle, H. H., Saito, T., Ozaki, T., Stratford, L. L., Noakes, D. E., and Hanson, M. A. (1999). Effect of maternal nutrient restriction in early gestation on development of the hypothalamic–pituitary–adrenal axis in fetal sheep at 0.8–0.9 of gestation. J. Endo. 163, 553–561..
| 1:CAS:528:DC%2BD3cXks1amtg%3D%3D&md5=e87ab67db96df1e8f51c315f1e59f880CAS |

Keenan, D. M., Roelfsema, F., Carroll, B. J., Iranmanesh, A., and Veldhuis, J. D. (2009). Sex defines the age dependence of endogenous ACTH-cortisol dose responsiveness. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R515–R523.
Sex defines the age dependence of endogenous ACTH-cortisol dose responsiveness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVaht7zL&md5=5e8c394042ff6b564c04b3793d277aa4CAS | 19535673PubMed |

Kumarasamy, V., Mitchell, M. D., Bloomfield, F. H., Oliver, M. H., Campbell, M. E., Challis, J. R. G., and Harding, J. E. (2005). Effects of periconceptional undernutrition on the initiation of parturition in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R67–R72.
Effects of periconceptional undernutrition on the initiation of parturition in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCqur0%3D&md5=5de4bc909f548a5f2ef8c600d1bf04b8CAS | 15331382PubMed |

Langley-Evans, S., Gardner, D., and Jackson, A. A. (1996). Maternal protein restriction influences the programming of the rat HPA. J. Nutr. 126, 1578–1585..
| 1:CAS:528:DyaK28XjtlKktr8%3D&md5=93580e358e82ba3cd36ae921e4d2d4b9CAS | 8648431PubMed |

Luther, J. S., Aitken, R. P., Milne, J. S., Matsuzaki, M., Reynolds, L. P., Redmer, D. A., and Wallace, J. M. (2007a). Maternal and fetal growth, body composition, endocrinology and metabolic status in undernourished adolescent sheep. Biol. Reprod. 77, 343–350.
Maternal and fetal growth, body composition, endocrinology and metabolic status in undernourished adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ontr4%3D&md5=8c6c67c85e87da7be652416ba8506b42CAS | 17475926PubMed |

Luther, J. S., Aitken, R. P., Milne, J. S., Matsuzaki, M., Reynolds, L. P., Redmer, D. A., and Wallace, J. M. (2007b). Placental growth, angiogenic gene expression and vascular development in undernourished adolescent sheep. Biol. Reprod. 77, 351–357.
Placental growth, angiogenic gene expression and vascular development in undernourished adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Ontr8%3D&md5=ccff0bd2f23c85484e736dd564ca9452CAS | 17475925PubMed |

Mercer, J. G., Lawrence, C. B., Beck, B., Burlet, A., Atkinson, T., and Barrett, P. (1995). Hypothalamic NPY and preproNPY mRNA in Djungarian hamsters: effects of food deprivation and photoperiod. Am. J. Physiol. 269, R1099–R1106..
| 1:CAS:528:DyaK2MXpslOksbc%3D&md5=135243b7c9b1352950859cf1cd067baaCAS | 7503297PubMed |

Nuyt, A. M., and Alexander, B. T. (2009). Developmental programming and hypertension. Curr. Opin. Nephrol. Hypertens. 18, 144–152.
Developmental programming and hypertension.Crossref | GoogleScholarGoogle Scholar | 19434052PubMed |

Phillips, D. I., Barker, D. J. P., Fall, C. H., Seckl, J. R., Whorwood, C. B., Wood, P. J., and Walker, B. R. (1998). Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757–760.
Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFOhuro%3D&md5=36937a8d96c85c0db646104d3ee82553CAS | 9506721PubMed |

Russel, A. J. F., Doney, J. M., and Gunn, R. G. (1969). Subjective assessment of body fat in live sheep. J. Agric. Sci. 72, 451–454.
Subjective assessment of body fat in live sheep.Crossref | GoogleScholarGoogle Scholar |

Seckl, J. R., and Holmes, M. C. (2007). Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat. Clin. Pract. Endocrinol. Metab. 3, 479–488.
Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFGrs78%3D&md5=48f76ddb5ec97d4156f9eae098af2b99CAS | 17515892PubMed |

Silva, C., Ines, L. S., Nour, D., Straub, R. H., and Da Silva, J. A. (2002). Differential male and female adrenal cortical steroid hormone and cortisol responses to interleukin-6 in humans. Ann. N. Y. Acad. Sci. 966, 68–72.
Differential male and female adrenal cortical steroid hormone and cortisol responses to interleukin-6 in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVWmsbg%3D&md5=d8d12f768584c8765d731d56a7836d9bCAS | 12114260PubMed |

Sloboda, D. M., Moss, T. J., Gurrin, L. C., Newham, J. P., and Challis, J. R. G. (2002). The effect of prenatal betamethasone administration on postnatal ovine hypothalamic–pituitary–adrenal function. J. Endo. 172, 71–81..
| 1:CAS:528:DC%2BD38XpsFWltw%3D%3D&md5=63f2c0c0e3a029df117609f8d8955dc6CAS |

van Lier, E., Perez-Clariget, R., and Forsberg, M. (2003). Sex differences in cortisol secretion after administration of an ACTH analoque in sheep during the breeding and non-breeding season. Anim. Reprod. Sci. 79, 81–92.
Sex differences in cortisol secretion after administration of an ACTH analoque in sheep during the breeding and non-breeding season.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1ehtL8%3D&md5=2dee501e32a285b60987883f8ccf8a0dCAS | 12853181PubMed |

Viau, V., Bingham, B., Davis, J., Lee, P., and Wong, M. (2005). Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotrophin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 146, 137–146.
Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotrophin-releasing hormone messenger ribonucleic acid expression in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGmt7nM&md5=4ab0ee70194e9dd5a36aa9af1e767299CAS | 15375029PubMed |

Wallace, J. M. (2010). Adaptive maternal, placental and fetal responses to nutritional extremes in the pregnant adolescent: lessons from sheep. In ‘Reproduction and Adaptation’. (Eds L. Rosetta and R. Goto.) In press. (Cambridge University Press: Cambridge.)

Wallace, J. M., Aitken, R. P., and Cheyne, M. A. (1996). Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J. Reprod. Fertil. 107, 183–190.
Nutrient partitioning and fetal growth in rapidly growing adolescent ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGgsbk%3D&md5=a2cf4016e59bef2eef2465b6e9e53842CAS | 8882283PubMed |

Wallace, J. M., Da Silva, P., Aitken, R. P., and Cheyne, M. A. (1997). Maternal endocrine status in relation to pregnancy outcome in rapidly growing adolescent sheep. J. Endo. 155, 359–368..
| 1:CAS:528:DyaK2sXntFyktr8%3D&md5=5185499d0d6ac81b76a292393495f100CAS |

Wallace, J. M., Bourke, D. A., Aitken, R. P., and Cruickshank, M. A. (1999). Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and foetal growth in adolescent ewes carrying singleton fetuses. Biol. Reprod. 61, 101–110.
Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and foetal growth in adolescent ewes carrying singleton fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKgtbc%3D&md5=a542a3fe64512b9ceb189795eb89cd46CAS | 10377037PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Palmer, R. M., Da Silva, P., and Cruickshank, M. A. (2000). Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep. Placenta 21, 100–108.
Relationship between nutritionally-mediated placental growth restriction and fetal growth, body composition and endocrine status during late gestation in adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvFCjtbg%3D&md5=c7f9362a757b630f5de2588706ea8f6fCAS | 10692257PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Leitch, N., and Hay, W. W. (2002). Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1027–R1036..
| 1:CAS:528:DC%2BD38XivVenu7c%3D&md5=dd029d51bac14c6c0706dd4310b6041dCAS | 11893606PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Milne, R. A., Milne, J. S., and Hay, W. W. (2003). Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep. J. Physiol. 547, 85–94.
Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFSkt74%3D&md5=763be752f52d82fb8ab7d8ec5363f0c5CAS | 12562948PubMed |

Wallace, J. M., Aitken, R. P., Milne, J. S., and Hay, W. W. (2004). Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol. Reprod. 71, 1055–1062.
Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrk%3D&md5=abfdc926d7a84eb99bcb426b0af1f34cCAS | 15201203PubMed |

Wallace, J. M., Regnault, T. R. H., Limeand, S. W., Hay, W. W., Jr, and Anthony, R. V. (2005). Investigating the causes of low birth weight in contrasting ovine paradigms. J. Physiol. 565, 19–26.
Investigating the causes of low birth weight in contrasting ovine paradigms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslyrurc%3D&md5=9a07fb4d2a524609937b050a6e6035b1CAS | 15774527PubMed |

Wallace, J. M., Luther, J. S., Milne, J. S., Aitken, R. P., Redmer, D. A., Reynolds, L. P., and Hay, W. W. (2006a). Nutritional modulation of adolescent pregnancy outcome: a review. Placenta 27, 61–68.
Nutritional modulation of adolescent pregnancy outcome: a review.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. M., Milne, J. S., Redmer, D. A., and Aitken, R. P. (2006b). Effect of diet composition on pregnancy outcome in overnourished rapidly growing adolescent sheep. Br. J. Nutr. 96, 1060–1068.
Effect of diet composition on pregnancy outcome in overnourished rapidly growing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCqsbY%3D&md5=517099b6de8cff363c1de7f06ad6bf28CAS | 17181881PubMed |

Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., et al. (2008). Birth weight and risk of Type 2 diabetes. A systemic review. JAMA 300, 2886–2897.
Birth weight and risk of Type 2 diabetes. A systemic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGiuw%3D%3D&md5=6b2b6503aa52352c121697929e00899fCAS | 19109117PubMed |