Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Neonatal superior ovarian nerve transection inhibits follicle development by enhancing follicular atresia and suppressing granulosa cell proliferation in rats

Xiaoxin Zhang A , Lei Zhang B , Shuying Huo A , Jianlin Wang B and Sheng Cui A C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

B School of Life Science, Lanzhou University, Lanzhou 730000, China.

C Corresponding author. Email: cuisheng@cau.edu.cn

Reproduction, Fertility and Development 22(7) 1148-1158 https://doi.org/10.1071/RD09271
Submitted: 6 November 2009  Accepted: 26 March 2010   Published: 20 August 2010

Abstract

The ovarian sympathetic nerves participate in the regulation of mammalian ovarian function, but it is still not known whether the neonatal ovarian sympathetic nerve is involved in follicular development and related mechanisms. In the present study, the superior ovarian nerve (SON) of the neonatal rat was transected on postnatal day (PD) 2, and follicle development, ovarian hormone secretion, ovulation rate, granulosa cell proliferation and apoptosis were analysed on PD 30 and PD 90. The results demonstrate that SON transection decreases follicle number and size, reduces ovulation induced by gonadotrophin and enhances follicular atresia. Bromodeoxyuridine (BrdU) and cleaved caspase-3 immunohistochemistry staining provide evidence that SON transection inhibits granulosa cell proliferation and promotes granulosa cell apoptosis. In addition, SON transection increases serum oestradiol levels, but has no influence on serum progesterone levels. These results suggest that the sympathetic nerve supply to the ovaries is important in regulating follicle development and ovary function. These results are critical for further understanding of the neuroendocrine regulation of ovary development and function, although the mechanism needs to be elucidated in future studies.

Additional keywords: oocyte, ovary, sympathetic nerve.


Acknowledgements

The present study was supported by grants to Sheng Cui from National Basic Research Program of China (2007CB947402), the Natural Science Foundation of China (30630011) and the Specialised Research Fund for the Doctoral Program of Higher Education (200800190021).


References

Aguado, L. I. , and Ojeda, S. R. (1984). Prepubertal ovarian function is finely regulated by direct adrenergic influences. Role of noradrenergic innervation. Endocrinology 114, 1845–1853.
Crossref | GoogleScholarGoogle Scholar | PubMed | Liu N., Zhang X. L., and Tian X. P. (2007). Effects of norepinephrine on hepatic stellate cell proliferation and apoptosis. Zhong hua Gan Zang Bing Za Zhi 15, 746–748. [In Chinese with English abstract]

Luna, F. , Cortés, M. , Flores, M. , Hernández, B. , Trujillo, A. , and Domínguez, R. (2003). The effects of superior ovarian nerve sectioning on ovulation in the guinea-pig. Reprod. Biol. Endocrinol. 1, 61–67.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Malamed, S. , Gibney, J. A. , and Ojeda, S. R. (1992). Ovarian innervation develops before initiation of folliculogenesis in the rat. Cell Tissue Res. 270, 87–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Manni, L. , Cajander, S. , Lundeberg, T. , Naylor, A. S. , Aloe, L. , Holmäng, A. , Jonsdottir, I. H. , and Stener-Victorin, E. (2005). Effect of exercise on ovarian morphology and expression of nerve growth factor and alpha(1)- and beta(2)-adrenergic receptors in rats with steroid-induced polycystic ovaries. J. Neuroendocrinol. 17, 846–858.
PubMed |

Mayerhofer, A. , Dissen, G. A. , Costa, M. E. , and Ojeda, S. R. (1997). A role for neurotransmitters in early follicular development: induction of functional follicle-stimulating hormone receptors in newly formed follicles of the rat ovary. Endocrinology 138, 3320–3329.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Morales, L. , Chavez, R. , Ayala, M. E. , and Dominguez, R. (1998). Effects of unilateral or bilateral superior ovarian nerve section in prepubertal rats on the ovulatory response to gonadotrophin administration. J. Endocrinol. 158, 213–219.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Morales-Ledesma, L. , Betanzos-Gárcia, R. , and Domínguez-Casalá, R. (2004). Unilateral or bilateral vagotomy performed on prepubertal rats at puberty onset of female rat deregulates ovarian function. Arch. Med. Res. 35, 279–283.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Morán, C. , Morales, L. , Quiróz, U. , and Domínguez, R. (2000). Effects of unilateral or bilateral superior ovarian nerve section in infantile rats on follicular growth. J. Endocrinol. 166, 205–211.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Numazawa, A. , and Kawashima, S. (1982). Morphometric studies on ovarian follicles and corpora lutea during the oestrous cycle in the mouse. J. Reprod. Fertil. 64, 275–283.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ojeda, S. R. , Andrews, W. W. , Advis, J. P. , and White, S. S. (1980). Recent advances in the endocrinology of puberty. Endocr. Rev. 1, 228–257.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Quirk, S. M. , Cowan, R. G. , Harman, R. M. , Hu, C. L. , and Porter, D. A. (2004). Ovarian follicular growth and atresia: the relationship between cell proliferation and survival. J. Anim. Sci. 82, E40–E52.
PubMed |

Rajah, R. , Glaser, E. M. , and Hirshfield, A. N. (1992). The changing architecture of the neonatal rat ovary during histogenesis. Dev. Dyn. 194, 177–192.
PubMed |

Riboni, L. (2002). Effects of sympathetic denervation on follicular distribution, oestradiol and progesterone serum levels in prepubertal hemi-ovariectomized female guinea-pig. Anim. Reprod. Sci. 73, 63–71.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Risvanli, A. , Timurkan, H. , Ozveren, M. F. , and Kalkan, C. (2004). A new ovarian denervation technique and its effect on sexual cycle, conception rates and offspring numbers in rats. Neuroendocrinol. Lett. 25, 283–286.
PubMed |

Romero, C. , Paredes, A. , Dissen, G. A. , and Ojeda, S. R. (2002). Nerve growth factor induces the expression of functional FSH receptors in newly formed follicles of the rat ovary. Endocrinology 143, 1485–1494.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Selstam, G. , Norjavaara, E. , Tegenfelt, T. , Lundberg, S. , Sandström, C. , and Persson, S. A. (1985). Partial denervation of the ovaries by transection of the suspensory ligament does not inhibit ovulation in rats treated with pregnant mare serum gonadotropin. Anat. Rec. 213, 392–395.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Seya, Y. , Fukuda, T. , Isobe, K. , Kawakami, Y. , and Takekoshi, K. (2006). Effect of norepinephrine on RhoA, MAP kinase, proliferation and VEGF expression in human umbilical vein endothelial cells. Eur. J. Pharmacol. 553, 54–60.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Silva, J. R. , Figueiredo, J. R. , and van den Hurk, R. (2009). Involvement of growth hormone (GH) and insulin-like growth factor (IGF) system in ovarian folliculogenesis. Theriogenology 71, 1193–1208.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sosa, Z. Y. , Casais, M. , Rastrilla, A. M. , and Aguado, L. I. (2000). Adrenergic influences on coeliac ganglion affect the release of progesterone from cycling ovaries: characterisation of an in vitro system. J. Endocrinol. 166, 307–318.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Takagi, K. , Yamada, T. , Miki, Y. , Umegaki, T. , Nishimura, M. , and Sasaki, J. (2007). Histological observation of the development of follicles and follicular atresia in immature rat ovaries. Acta Med. Okayama 61, 283–298.
PubMed |

Tomic, D. , Miller, K. P. , Kenny, H. A. , Woodruff, T. K. , Hoyer, P. , and Flaws, J. A. (2004). Ovarian follicle development requires Smad3. Mol. Endocrinol. 18, 2224–2240.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Trujillo, A. , and Riboni, L. (2002). Effects of functional peripheral sympathetic denervation induced by guanethidine on follicular development and ovulation of the adult female guinea-pig. Gen. Comp. Endocrinol. 127, 273–278.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Voronina, E. , Lovasco, L. A. , Gyuris, A. , Baumgartner, R. A. , Parlow, A. F. , and Freiman, R. N. (2007). Ovarian granulosa cell survival and proliferation requires the gonad-selective TFIID subunit TAF4b. Dev. Biol. 303, 715–726.
Crossref | GoogleScholarGoogle Scholar | PubMed |

White, S. S. , and Ojeda, S. R. (1981). Changes in ovarian luteinizing hormone and follicle-stimulating hormone receptor content and in gonadotrophin-induced ornithine decarboxylase activity during prepubertal and pubertal development of the female rat. Endocrinology 109, 152–161.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wu, Y. J. , Chen, D. W. , Liu, J. L. , Zhang, J. H. , Luo, H. S. , and Cui, S. (2009). Oestradiol promotes pituitary cell proliferation and gonadotroph differentiation at different doses and with different mechanisms in chick embryo. Steroids 74, 441–448.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yan, J. , Zhou, B. , Yang, J. , Tai, P. , Chen, X. , Zhang, H. , Zhang, M. , and Xia, G. (2008). Glucose can reverse the effects of acute fasting on mouse ovulation and oocyte maturation. Reprod. Fertil. Dev. 20, 703–712.
Crossref | GoogleScholarGoogle Scholar | PubMed |