Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Directional mapping of DNA nicking in ejaculated and cauda epididymidal spermatozoa of the short-beaked echidna (Tachyglossus aculeatus: Monotremata)

S. D. Johnston A D , C. López-Fernández B , A. Gosálbez B , W. V. Holt C and J. Gosálvez B
+ Author Affiliations
- Author Affiliations

A School of Animal Studies, The University of Queensland, Gatton, Qld 4343, Australia.

B Autonomous University of Madrid, Cantoblanco 20849, Spain.

C Institute of Zoology, Zoological Society of London, London NW1 4RY, UK.

D Corresponding author. Email: stevejohnston@uqconnect.net

Reproduction, Fertility and Development 21(8) 1008-1014 https://doi.org/10.1071/RD09079
Submitted: 30 March 2009  Accepted: 7 June 2009   Published: 30 October 2009

Abstract

Prototherian spermatozoa are unique amongst the Mammalia in terms of their filiform morphology, tandem arrangement of chromosomes and formation of sperm bundles. In the present study, we provide observations of echidna spermatozoa and note that the superstructure of the bundle is engineered around the shape of the individual sperm head and that this in turn may be a consequence of the unusual circumferential and helicoidal condensation of the DNA during spermiogenesis. Frozen–thawed ejaculated echidna spermatozoa were incubated and examined for the presence of non-typical DNA conformation by means of in situ labelling of DNA breaks using Klenow polymerase and via alkaline single-cell comet assays for detection of fragmented DNA. Both techniques successfully revealed the presence of what appeared to be directional DNA nicking, co-localised with the presence of highly sensitive alkali sites along the length of the sperm nucleus. It was not possible to define whether these alternative DNA configurations were associated with a failure of the sperm nucleus to condense appropriately during spermiogenesis or were evidence of DNA fragmentation following post-thaw incubation or a sequential structural chromatin rearrangement necessary for fertilisation.

Additional keywords: comet assay, sperm chromatin dispersion assay.


Acknowledgements

The authors thank Ms Paqui Arroyo for her technical help. This work was supported by the Ministry of Education and Science, Spain – Grants BFU 2007–66340/BFI; CGL2005–02898/BOS.


References

Ausió J., Eirín-López J. M., and Frehlick L. J. (2007). Evolution of vertebrate chromosomal sperm proteins: implications for fertility and sperm competition. In ‘Spermatology. Vol. 65’. (Eds E. R. S. Roldan and M. Gomendio.) pp. 63–80. (Nottingham University Press: Nottingham.)

Bartke, A. (1995). Editorial: apoptosis of male germ cells, a generalized or a cell type-specific phenomenon? Endocrinology 136, 3–4.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bedford, J. M. , and Rifkin, J. M. (1979). An evolutionary view of the male reproductive tract and sperm maturation in a monotreme mammal – the echidna, Tachyglossus aculeatus. Am. J. Anat. 156, 207–229.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Braun, R. E. (2001). Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Caron, C. , Govin, J. , Rousseaux, S. , and Khochbin, S. (2005). How to pack the genome for a safe trip. Prog. Mol. Subcell. Biol. 38, 65–89.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Carrick, F. N. , and Hughes, R. L. (1982). Aspects of the structure and development of monotreme spermatozoa and their relevance to the evolution of mammalian sperm morphology. Cell Tissue Res. 222, 127–141.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Černá, A. , López-Fernández, C. , Fernández, J. L. , Moreno Díaz de la Espina, S. , de la Torre, C. , and Gosálvez, J. (2008). Triplex configuration in the nick-free DNAs that constitute the chromosomal scaffolds in grasshopper spermatids. Chromosoma 117, 15–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Djakiew, D. , and Jones, R. C. (1983). Sperm maturation, fluid transport and secretion and absorption of protein in the epididymis of the echidna, Tachyglossus aculeatus. J. Reprod. Fertil. 68, 445–456.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Enciso, M. , López-Fernández, C. , Fernández, J. L. , García, P. , Gosálbez, A. , and Gosálvez, J. (2006). A new method to analyze boar sperm DNA fragmentation under bright-field or fluorescence microscopy. Theriogenology 65, 308–316.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fawcett, D. W. , Anderson, W. , and Philips, D. M. (1971). Morphogenetic factors influencing the shape of sperm head. Dev. Biol. 26, 220–251.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Johnston, S. D. , McGowan, M. R. , Phillips, N. J. , and O’Callaghan, P. (2000). Optimal physicochemical conditions for the manipulation and short-term preservation of koala (Phascolarctos cinereus) spermatozoa. J. Reprod. Fertil. 118, 273–281.
PubMed |  CAS |

Johnston, S. D. , Lopez-Fernandez, C. , Gosalbez, A. , Zee, Y. , Holt, W. V. , Allen, C. , and Gosalvez, J. (2007). The relationship between sperm morphology and chromatin integrity in the koala (Phascolarctos cinereus) as assessed by the sperm chromatin dispersion test (SCDt). J. Androl. 28, 891–899.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Jones, R. C. , Djakiew, D. , and Dacheux, J.-L. (2004). Adaptations of the short-beaked echidna Tachyglossus aculateus for sperm production, particularly in an arid environment. Aust. Mammal. 26, 199–204.
Crossref | GoogleScholarGoogle Scholar |

Kurtz, K. , Saperas, N. , Ausio, J. , and Chiva, M. (2009). Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis. J. Exp. Zool. 312, 149–163.
Crossref | GoogleScholarGoogle Scholar |

Laberge, R. M. , and Boissonneault, G. (2005). On the nature and origin of DNA strand breaks in elongating spermatids. Biol. Reprod. 73, 289–296.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Leduc, F. , Maquennehan, V. , Bikond Nkoma, G. , and Boissonneault, G. (2008). DNA damage response during chromatin remodelling in elongating spermatids of mice. Biol. Reprod. 78, 324–332.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lin, M. , and Jones, R. C. (2000). Spermiogenesis and spermiation in a monotreme mammal, the platypus, Ornithorhynchus anatinus. J. Anat. 196, 217–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |

López-Fernández, C. , Fernández, J. L. , Gosálbez, A. , Arroyo, F. , Vázquez, J. M. , and Holt, W. V. (2008). Dynamics of sperm DNA fragmentation in domestic animals: III. Ram. Theriogenology 70, 898–908.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Marotta, R. , Melone, G. , Bright, M. , and Ferraguti, M. (2005). Spermatozoa and sperm aggregates in the Vestimentiferan Lamellibranchia luymesi compared with those of Rifita pachyptila (Polychaeta: Siboglinidae: Vestimentifera). Biol. Bull. 209, 215–226.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McClusky, L. M. (2003). A scanning electron microscopy study of germ cell maturation in the reproductive tract of the male soupfin shark (Galeorhinus galeus). Acta Zoologica 84, 69–76.
Crossref | GoogleScholarGoogle Scholar |

Morrow, G. , Andersen, N. A. , and Nicol, S. C. (2009). Reproductive strategies of the short-beaked echidna – a review with new data from a long-term study on the Tasmanian subspecies (Tachyglossus aculeatus setosus). Aust. J. Zool. 57, 275–282.
Crossref | GoogleScholarGoogle Scholar |

Muriel, L. , Segrelles, E. , Goyanes, V. , Gosálvez, J. , and Fernández, J. L. (2004). Structure of human sperm DNA and background damage analysed by in situ enzymatic treatment and digital image analysis. Mol. Hum. Reprod. 10, 203–209.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Print, C. G. , and Loveland, K. L. (2000). Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays 22, 423–430.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rathke, C. , Baarends, W. M. , Jayaramaiah-Raja, S. , Bartkuhn, M. , Renkawitz, R. , and Renkawitz-Pohl, R. (2007). Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J. Cell Sci. 120, 1689–1700.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Retief, J. D. , Winkfein, R. J. , and Dixon, G. H. (1993). Evolution of the monotremes: the sequences of the protamine P1 genes of platypus and echidna. Eur. J. Biochem. 218, 457–461.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ricci, G. , Perticarari, S. , Fragonas, E. , Giolo, E. , Canova, S. , Pozzobon, C. , Guaschino, S. , and Presani, G. (2002). Apoptosis in human sperm: its correlation with semen quality and the presence of leukocytes. Hum. Reprod. 17, 2665–2672.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rismiller, P. D. , and Seymour, R. S. (1991). The echidna. Sci. Am. 264, 96–103.


Rismiller, P. D. , and McKelvey, M. W. (2009). Activity and behaviour of lactating echidnas (Tachyglossus aculeatus multiaculeatus) from hatching of egg to weaning of young. Aust. J. Zool. 57, 265–273.
Crossref | GoogleScholarGoogle Scholar |

Watson, J. M. , Meyne, J. , and Graves, J. A. M. (1996). Ordered tandem arrangement of chromosomes in the sperm heads of monotreme mammals. Proc. Natl Acad. Sci. USA 93, 10 200–10 205.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zhang, X. , San Gabriel, M. , Libman, J. , Phillips, S. , Courchesne, A. , and Zini, A. (2007). Localization of single-stranded DNA in human sperm nuclei. Fertil. Steril. 88, 1334–1338.
Crossref | GoogleScholarGoogle Scholar | PubMed |