Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Detection of condensin I and II in maturing pig oocytes

Lucie Lišková A , Andrej Šušor A , Kateřina Pivoňková A , Adéla Šašková A , Pavla Karabínová A and Michal Kubelka A B
+ Author Affiliations
- Author Affiliations

A Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21 Liběchov, Czech Republic.

B Corresponding author. Email: kubelka@iapg.cas.cz

Reproduction, Fertility and Development 22(4) 644-652 https://doi.org/10.1071/RD09068
Submitted: 21 March 2009  Accepted: 3 October 2009   Published: 11 March 2010

Abstract

The multiprotein complexes known as condensins (I and II) are major players in chromosome dynamics in mitotic and meiotic cells. Here, we report for the first time the detection of different condensin subunits from both complexes in mammalian oocytes. Using immunoblotting analysis we examined expression levels of condensin subunits during meiotic maturation of porcine oocytes. The expression of the core subunit structural maintenance of chromosomes 2 (SMC2), identical in both condensin complexes, did not change significantly during maturation. Similarly, there was no significant change in the expression of the chromosome associated protein (CAP)-H and CAP-H2 subunits, components of condensin I and II, respectively. Conversely, the expression profiles of CAP-G, CAP-D2 (condensin I) and CAP-D3 (condensin II) were more interesting. At least two isoforms of the CAP-D2 subunit were detected, along with three isoforms of the CAP-D3 and CAP-G subunits. We suggest that this diverse migration of subunit isoforms is due to post-translational modification. Earlier, it was reported that non-SMC proteins are phosphorylated by cyclin-dependent kinase 1. In the present study, we analysed the phosphorylation status of the three subunits in oocyte extracts using alkaline phosphatase treatment and we found that at least the fastest migrating form of CAP-D3 was likely to be phosphorylated in maturing porcine oocytes. In addition, the localisation of CAP-H and CAP-H2 subunits was examined using immunofluorescence staining with specific antibodies, as well as following microinjection of their enhanced green fluorescent protein-tagged mRNA into germinal vesicle-stage oocytes. CAP-H was found in the cytoplasm, whereas CAP-H2 was localised within the nucleus.

Additional keywords: chromosome condensation, female meiosis, phosphorylation.


Acknowledgements

The authors are indebted to P. Jandurová, L. Trávníčková and Š. Hladký for their skilful technical assistance. The authors thank K. Kimura for the condensin I antibodies. This research was performed in the frame of Institutional Research Programme (IAPG No. AV OZ 50450515) and was supported by grants 204/06/1297 and P502/10/0944 from the Czech Science Foundation. L.L. was supported by grant 524/09/P435 and P.K. was supported by grant 204/09/H084 from the Czech Science Foundation.


References

Beenders, B. , Watrin, E. , Legagneux, V. , Kireev, I. , and Bellini, M. (2003). Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res. 11, 549–564.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Belmont, A. S. (2006). Mitotic chromosome structure and condensation. Curr. Opin. Cell Biol. 18, 632–638.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Chan, R. C. , Severson, A. F. , and Meyer, B. J. (2004). Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol. 167, 613–625.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Csankovszki, G. , Collette, K. , Spahl, K. , Carey, J. , and Snyder, M. , et al. (2009). Three distinct condensin complexes control C. elegans chromosome dynamics. Curr. Biol. 19, 9–19.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

D’Amours, D. , Stegmeier, F. , and Amon, A. (2004). Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gerlich, D. , Hirota, T. , Koch, B. , Peters, J. M. , and Ellenberg, J. (2006). Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hartl, T. A. , Sweeney, S. J. , Knepler, P. J. , and Bosco, G. (2008). Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet. 4, e1000228.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hirano, T. (2005). Condensins: organizing and segregating the genome. Curr. Biol. 15, R265–R275.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hirano, T. , and Mitchison, T. J. (1994). A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79, 449–458.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hirano, T. , Kobayashi, R. , and Hirano, M. (1997). Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hirota, T. , Gerlich, D. , Koch, B. , Ellenberg, J. , and Peters, J. M. (2004). Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. 117, 6435–6445.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hudson, D. F. , Marshall, K. M. , and Earnshaw, W. C. (2009). Condensin: architect of mitotic chromosomes. Chromosome Res. 17, 131–144.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kaitna, S. , Pasierbek, P. , Jantsch, M. , Loidl, J. , and Glotzer, M. (2002). The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr. Biol. 12, 798–812.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kimura, K. , Hirano, M. , Kobayashi, R. , and Hirano, T. (1998). Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282, 487–490.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lévesque, J. T. , and Sirard, M. A. (1996). Resumption of meiosis is initiated by the accumulation of cyclin B in bovine oocytes. Biol. Reprod. 55, 1427–1436.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McGuinness, B. E. , Anger, M. , Kouznetsova, A. , Gil-Bernabe, A. M. , and Helmhart, W. , et al. (2009). Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Motlik, J. , and Fulka, J. (1976). Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J. Exp. Zool. 198, 155–162.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Murphy, L. A. , and Sarge, K. D. (2008). Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis. Biochem. Biophys. Res. Commun. 377, 1007–1011.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Onn, I. , Aono, N. , Hirano, M. , and Hirano, T. (2007). Reconstitution and subunit geometry of human condensin complexes. EMBO J. 26, 1024–1034.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ono, T. , Losada, A. , Hirano, M. , Myers, M. P. , Neuwald, A. F. , and Hirano, T. (2003). Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115, 109–121.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ono, T. , Fang, Y. , Spector, D. L. , and Hirano, T. (2004). Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol. Biol. Cell 15, 3296–3308.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Solc, P. , Saskova, A. , Baran, V. , Kubelka, M. , Schultz, R. M. , and Motlik, J. (2008). CDC25A phosphatase controls meiosis I progression in mouse oocytes. Dev. Biol. 317, 260–269.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

St-Pierre, J. , Douziech, M. , Bazile, F. , Pascariu, M. , Bonneil, E. , Sauve, V. , Ratsima, H. , and D’Amours, D. (2009). Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol. Cell 34, 416–426.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Taieb, F. , Thibier, C. , and Jessus, C. (1997). On cyclins, oocytes, and eggs. Mol. Reprod. Dev. 48, 397–411.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takemoto, A. , Kimura, K. , Yokoyama, S. , and Hanaoka, F. (2004). Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J. Biol. Chem. 279, 4551–4559.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tatemoto, H. , and Terada, T. (1995). On the c-mos proto-oncogene product during meiotic maturation in bovine oocytes cultured in vitro. J. Exp. Zool. 272, 159–162.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Viera, A. , Gomez, R. , Parra, M. T. , Schmiesing, J. A. , Yokomori, K. , Rufas, J. S. , and Suja, J. A. (2007). Condensin I reveals new insights on mouse meiotic chromosome structure and dynamics. PLoS One 2, e783.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Watrin, E. , Cubizolles, F. , Osborne, H. B. , Le Guellec, K. , and Legagneux, V. (2003). Expression and functional dynamics of the XCAP-D2 condensin subunit in Xenopus laevis oocytes. J. Biol. Chem. 278, 25 708–25 715.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yeong, F. M. , Hombauer, H. , Wendt, K. S. , Hirota, T. , and Mudrak, I. , et al. (2003). Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr. Biol. 13, 2058–2064.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yu, H. G. , and Koshland, D. E. (2003). Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J. Cell Biol. 163, 937–947.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yu, H. G. , and Koshland, D. (2005). Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell 123, 397–407.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |