Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Characterisation of bovine epiblast-derived outgrowth colonies

Esben Oestrup A , Jakob Gjoerret B , Kirsten Schauser A , Mette Schmidt C , Vanessa Hall A and Poul Hyttel A D
+ Author Affiliations
- Author Affiliations

A Department of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg C, Denmark.

B Dako Denmark A/S, Produktionsvej 42, 2600 Glostrup, Denmark.

C Department of Large Animal Sciences, Faculty of Life Sciences, University of Copenhagen, Bülowsvej 17, DK-1870 Frederiksberg C, Denmark.

D Corresponding author. Email: poh@life.ku.dk

Reproduction, Fertility and Development 22(4) 625-633 https://doi.org/10.1071/RD08300
Submitted: 9 December 2008  Accepted: 21 October 2009   Published: 11 March 2010

Abstract

The aim of the present study was to characterise bovine epiblast-derived outgrowth colonies (OCs) with respect to the embryonic origin of their cellular components. Epiblasts were isolated mechanically from bovine Day 12 embryos. Epiblasts were cultured on feeder layers of SNL cells (neomycin-resistant leukaemia inhibitory factor (LIF)-producing STO cells) in Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium supplemented with 15% fetal calf serum, 5% KnockOut Serum Replacement, LIF, basic fibroblast growth factor, non-essential amino acids (NEAA) and nucleosides. Samples were fixed on Days 4, 6 and 8 of culture and processed for immunocytochemistry and transmission electron microscopy. Epiblasts formed OCs consisting of a central core of epiblast-like cells with a basal plate of flattened cells extending outwards from the core. The cells of the core showed nuclear octamer-binding transcription factor 4 (OCT4) staining, indicating an epiblast origin, and some also stained positive for cytoplasmic vimentin. Adjacent cells were linked by tight junctions towards the surface of the colony and rested on a basal lamina. The cells of the basal plate predominantly stained for α1-fetoprotein (AFP), indicative of a possible hypoblast origin. Only a few cells scattered within the basal plate exhibited cytokeratin 8 staining, indicating a trophectoderm nature. The intensity of OCT4 and vimentin staining within the core had decreased by Day 8 of culture. In conclusion, OCs derived from bovine Day 12 epiblasts display a central core of OCT4-stained cells of a potential epiblast origin surrounded by a basal plate of mainly AFP-stained cells of a potential hypoblast nature.

Additional keywords: embryonic stem cells, hypoblast, octamer-binding transcription factor 4 (OCT4), pluripotency, trophectoderm.


Acknowledgements

The authors express their sincere thanks to Ms Jytte Nielsen and Ms Hanne Holm for valuable technical assistance. This work was supported by the Danish Agency for Science, Technology and Innovation.


References

Avery, B. , Hay-Schmidt, A. , Hyttel, P. , and Greve, T. (1998). Embryo development, oocyte morphology, and kinetics of meiotic maturation in bovine oocytes exposed to 6-dimethylaminopurine prior to in vitro maturation. Mol. Reprod. Dev. 50, 334–344.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Dziadek, M. , and Adamson, E. (1978). Localization and synthesis of alphafoetoprotein in post-implantation mouse embryos. J. Embryol. Exp. Morphol. 43, 289–313.
PubMed |  CAS |

Franke, W. W. , Grund, C. , Kuhn, C. , Jackson, B. W. , and Illmensee, K. (1982). Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation 23, 43–59.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gjørret, J. O. , and Maddox-Hyttel, P. (2005). Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod. Fertil. Dev. 17, 113–124.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hansis, C. , Grifo, J. A. , and Krey, L. C. (2000). Oct-4 expression in inner cell mass and trophectoderm of human blastocysts. Mol. Hum. Reprod. 6, 999–1004.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Holm, P. , Booth, P. J. , Schmidt, M. H. , Greve, T. , and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hyttel, P. , and Madsen, I. (1987). Rapid method to prepare mammalian oocytes and embryos for transmission electron microscopy. Acta Anat. (Basel) 129, 12–14.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Jackson, B. W. , Grund, C. , Winter, S. , Franke, W. W. , and Illmensee, K. (1981). Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos. Differentiation 20, 203–216.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Josephson, R. (2007). Molecular cytogenetics: making it safe for human embryonic stem cells to enter the clinic. Expert Rev. Mol. Diagn. 7, 395–406.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Keefer, C. L. , Pant, D. , Blomberg, L. , and Talbot, N. C. (2007). Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98, 147–168.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kirchhof, N. , Carnwath, J. W. , Lemme, E. , Anastassiadis, K. , Scholer, H. , and Niemann, H. (2000). Expression pattern of Oct-4 in preimplantation embryos of different species. Biol. Reprod. 63, 1698–1705.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurosaka, S. , Eckardt, S. , and McLaughlin, K. J. (2004). Pluripotent lineage definition in bovine embryos by Oct4 transcript localization. Biol. Reprod. 71, 1578–1582.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Maddox-Hyttel, P. , Alexopoulos, N. I. , Vajta, G. , Lewis, I. , Rogers, P. , Cann, L. , Callesen, H. , Tveden-Nyborg, P. , and Trounson, A. (2003). Immunohistochemical and ultrastructural characterization of the initial post-hatching development of bovine embryos. Reproduction 125, 607–623.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Maddox-Hyttel, P. , Wolf, X. A. , Rasmussen, M. A. , and Schauser, K. (2007). Embryonic stem cells in pig and cattle: derivation, culture and potential applications. Acta Sci. Vet. 35(Suppl. 3), s823–s830.


McMahon, A. P. , and Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mitalipov, S. M. , Kuo, H. C. , Hennebold, J. D. , and Wolf, D. P. (2003). Oct-4 expression in pluripotent cells of the rhesus monkey. Biol. Reprod. 69, 1785–1792.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mitalipova, M. , Beyhan, Z. , and First, N. L. (2001). Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 3, 59–67.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Muñoz, M. , Rodríguez, A. , De Frutos, C. , Caamaño, J. N. , Díez, C. , Facal, N. , and Gómez, E. (2008). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell-lines. Theriogenology 69, 1159–1164.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nichols, J. , Zevnik, B. , Anastassiadis, K. , Niwa, H. , Klewe-Nebenius, D. , Chambers, I. , Scholer, H. , and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Page, M. (1989). Changing patterns of cytokeratins and vimentin in the early chick embryo. Development 105, 97–107.
PubMed |  CAS |

Pesce, M. , and Scholer, H. R. (2001). Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, 271–278.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reubinoff, B. E. , Pera, M. F. , Fong, C. Y. , Trounson, A. , and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro Nat. Biotechnol. 18, 399–404.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Saito, S. , Strelchenko, N. , and Niemann, H. (1992). Bovine embryonic stem cell-like cell lines cultured over several passages. Dev. Genes Evol. 201, 134–141.


Shi, S. R. , Key, M. E. , and Kalra, K. L. (1991). Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J. Histochem. Cytochem. 39, 741–748.
CAS | PubMed |

Stice, S. L. , Strelchenko, N. S. , Keefer, C. L. , and Matthews, L. (1996). Pluripotent bovine embryonic cell lines direct embryonic development following nuclear transfer. Biol. Reprod. 54, 100–110.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Strelchenko, N. (1996). Bovine pluripotent stem cells. Theriogenology 45, 131–140.
Crossref | GoogleScholarGoogle Scholar |

Talbot, N. C. , Powell, A. M. , and Rexroad, C. E. (1995). In vitro pluripotency of epiblasts derived from bovine blastocysts. Mol. Reprod. Dev. 42, 35–52.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

van Eijk, M. J. , van Rooijen, M. A. , Modina, S. , Scesi, L. , and Folkers, G. , et al. (1999). Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol. Reprod. 60, 1093–1103.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vejlsted, M. , Avery, B. , Schmidt, M. , Greve, T. , Alexopoulos, N. , and Maddox-Hyttel, P. (2005). Ultrastructural and immunohistochemical characterization of the bovine epiblast. Biol. Reprod. 72, 678–686.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |