Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

SRB Reproduction, Fertility and Development Award Lecture 2008. Regulation and manipulation of angiogenesis in the ovary and endometrium

Hamish M. Fraser A C and W. Colin Duncan B
+ Author Affiliations
- Author Affiliations

A MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, Queen’s Institute of Medical Research, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

B Obstetrics and Gynaecology, Division of Reproductive and Developmental Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.

C Corresponding author. Email: h.fraser@hrsu.mrc.ac.uk

Reproduction, Fertility and Development 21(3) 377-392 https://doi.org/10.1071/RD08272
Submitted: 21 November 2008  Accepted: 19 January 2009   Published: 4 March 2009

Abstract

The marked cyclical physiological angiogenesis in the developing follicle, corpus luteum and endometrium implies a critical role in health and disease. Our approach to understanding its regulation has been to localise and quantify the temporal changes in putative angiogenic factors, and their receptors, in human and non-human primate tissue and to use antagonists to dissect their role by specific inhibition at defined periods during the ovulatory cycle in non-human primates in vivo. The course of angiogenesis throughout the cycle and the cellular and molecular effects of inhibitory treatments have been investigated in the marmoset ovary and uterus, whereas consequences on pituitary–ovarian function have been monitored in macaques. Inhibition of vascular endothelial growth factor (VEGF) at the time of follicle recruitment or selection prevents endothelial cell proliferation, leading to inhibition of follicular development. VEGF inhibition during the early luteal phase prevents angiogenesis and restricts development of the luteal microvasculature. Inhibition of angiogenesis at all stages of the cycle leads to profound suppression of ovarian function. Even during the ‘post-angiogenic’ period of the luteal phase, inhibition of VEGF precipitates a suppression of progesterone secretion, pointing to additional roles for VEGF in the ovary. In the endometrium, oestrogen drives endometrial angiogenesis through VEGF. Thus, oestrogen can restore angiogenesis after ovariectomy, but not in the presence of VEGF inhibitors. These investigations enhance our understanding of the regulation of angiogenesis in the ovary and uterus and inform studies on conditions with abnormal vascularisation, such as polycystic ovary syndrome, endometriosis, uterine fibroids and menstrual dysfunction.


Acknowledgements

The authors thank their colleagues in the Centre for Reproductive Biology for their constructive discussions during the course of these studies and the support staff in the MRC Unit, especially Helen Wilson in the laboratory and Keith Morris and staff in the R. V. Short Building. The authors are especially grateful to their collaborators Dr Stanley J. Wiegand (Regeneron Pharmaceuticals), Professor Christine Wulff, University of Ulm, and Dr Fiona Thomas. The authors also thank Dr P. A. W. Rogers (Monash Medical Centre) for advice on endometrial angiogenesis. The authors are grateful to Regeneron Pharmaceuticals for the gift of VEGF Trap. Finally, the authors acknowledge the contribution of the PhD students associated with this program: Dr Fiona M. Young, Dr Sarah Dickson, Dr Amanda Rowe, Dr Paul Taylor and Samantha Garside. The authors’ work described herein was supported by MRC Unit core funding to H.M.F. (projects U.1276.00.002.00006.01 and U.1276.00.004.00003.01).


References

Aberdeen, G. W. , Wiegand, S. J. , Bonagura, T. W. J. , Pepe, G. J. , and Albrecht, E. D. (2008). Vascular endothelial growth factor mediates the estrogen-induced breakdown of tight junctions between and increase in proliferation of microvessel endothelial cells in the baboon endometrium. Endocrinology 149, 6076–6083.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Folkman J. (1992). Angiogenesis in female reproductive organs. In ‘Steroid Hormones and Uterine Bleeding’. (Eds N. J. Alexander and C. D’Arcangues.) pp. 143–158. (AAAS Press: Washington D.C.)

Fraser H. M. (2007). Regulation of angiogenesis in the ovary. In ‘Angiogenesis in Endocrine Tissues’. (Eds I. Vilgrain and J. J. Feige.) pp. 73–97. (Research Signpost: Kerala.)

Fraser, H. M. , and Wulff, C. (2001). Angiogenesis in the primate ovary. Reprod. Fertil. Dev. 13, 557–566.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Rodewald M., Herr D., Duncan W. C., Fraser H. M., Hack G., Konrad R., Gagsteiger F., Kreienberg R., and Wulff C. (2009). Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial cell permeability. Hum. Reprod. 24, in press.

Salamonsen, L. A. (2003). Tissue injury and repair in the female human reproductive tract. Reproduction 125, 301–311.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Shozu, M. , Minami, N. , Yokoyama, H. , Inoue, M. , Kurihara, H. , Matsushima, K. , and Kuno, K. (2005). ADAMTS-1 is involved in normal follicular development, ovulatory process and organization of the medullary vascular network in the ovary. J. Mol. Endocrinol. 35, 343–355.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Silvestri, A. , and Fraser, H. M. (2007). Oestrogen and progesterone receptors in the marmoset endometrium: changes during the ovulatory cycle, early pregnancy and after inhibition of vascular endothelial growth factor, GnRH or ovariectomy. Reproduction 134, 341–353.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sleer, L. S. , and Taylor, C. C. (2007). Platelet-derived growth factors and receptors in the rat corpus luteum: localization and identification of an effect on luteogenesis. Biol. Reprod. 76, 391–400.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Smith, S. K. (1998). Angiogenesis, vascular endothelial growth factor and the endometrium. Hum. Reprod. Update 4, 509–519.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sugino, N. , Suzuki, T. , Sakata, A. , Miwa, I. , Asada, H. , Taketani, T. , Yamagata, Y. , and Tamura, H. (2005). Angiogenesis in the human corpus luteum: changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J. Clin. Endocrinol. Metab. 90, 6141–6148.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takahashi, N. , Itoh, M. T. , and Ishizuka, B. (2008). Human chorionic gonadotrpin induces nestin expression in endothelial cells of the ovary via vascular endothelial growth factor signalling. Endocrinology 149, 253–260.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Taylor, P. D. , Hillier, S. G. , and Fraser, H. M. (2004). Effects of GnRH antagonist treatment on follicular development and angiogenesis in the primate ovary. J. Endocrinol. 183, 1–17.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Taylor, P. D. , Wilson, H. , Hillier, S. G. , Wiegand, S. J. , and Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development, and atresia in the marmoset. Mol. Hum. Reprod. 13, 729–736.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thomas, F. H. , Wilson, H. , Silvestri, A. , and Fraser, H. M. (2008). Thrombospondin-1 expression is increased during follicular atresia in the primate ovary. Endocrinology 149, 185–192.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Thurston, G. , Noguera-Troise, I. , and Yancopoulos, G. D. (2007). The delta paradox: DLL4 blockade leads to more tumor vessels but less tumour growth. Nat. Rev. Cancer 7, 327–331.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

van den Driesche, S. , Myers, M. , Gay, E. , Thong, K. J. , and Duncan, W. C. (2008). HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Mol. Hum. Reprod. 14, 455–464.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Van Langendonckt, A. , Donnez, J. , Defrere, S. , Dunselman, G. A. , and Groothuis, P. G. (2008). Antiangiogenic and vascular-disrupting agents in endometriosis: pitfalls and promises. Mol. Hum. Reprod. 14, 259–268.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, T. H. , Horng, S. G. , Chang, C. L. , Wu, H. M. , Tsai, Y. J. , Wang, H. S. , and Soong, Y. K. (2002). Human chorionic gonadotropin-induced ovarian hyperstimulation syndrome is associated with up-regulation of vascular endothelial growth factor. J. Clin. Endocrinol. Metab. 87, 3300–3308.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Weston, G. , and Rogers, P. A. (2000). Endometrial angiogenesis. Baillieres Best Pract. Res. Clin. Obstet. Gynaecol. 14, 919–936.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Wulff, C. , Wilson, H. , Largue, P. , Duncan, W. C. , Armstrong, D. , and Fraser, H. M. (2000). Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, Tie-2 and vascular endothelial growth factor messenger ribonucleic acid. J. Clin. Endocrinol. Metab. 85, 4302–4309.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wulff, C. , Dickson, S. E. , Duncan, W. C. , and Fraser, H. M. (2001a). Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum. Reprod. 16, 2515–2524.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wulff, C. , Wilson, H. , Rudge, J. S. , Wiegand, S. J. , Lunn, S. F. , and Fraser, H. M. (2001b). Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor Trap A40. J. Clin. Endocrinol. Metab. 86, 3377–3386.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wulff, C. , Wilson, H. , Wiegand, S. J. , Rudge, J. S. , and Fraser, H. M. (2002). Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 143, 2797–2807.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Xu, F. , and Stouffer, R. L. (2005). Local delivery of angiopoietin-2 into the preovulatory follicle terminates the menstrual cycle in rhesus monkeys. Biol. Reprod. 72, 1352–1358.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yamashita, H. , Kamada, D. , Shirasuna, K. , Matsui, M. , Shimizu, T. , Kida, K. , Berisha, B. , Schams, D. , and Miyamoto, A. (2008). Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 75, 1449–1456.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zimmermann, R. C. , Xiao, E. , Husami, N. , Sauer, M. V. , Lobo, R. , Kitajewski, J. , and Ferin, M. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. J. Clin. Endocrinol. Metab. 86, 768–772.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zimmermann, R. C. , Xiao, E. , Bohlen, P. , and Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology 143, 2496–2502.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Zimmermann, R. C. , Hartman, T. , Kavic, S. , Pauli, S. A. , Bohlen, P. , Sauer, M. V. , and Kitajewski, J. (2003). Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. J. Clin. Invest. 112, 659–669.
PubMed |  CAS |