Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Reorganisation of human sperm nuclear architecture during formation of pronuclei in a model system

Olga Mudrak A C D , Rajeev Chandra A D , Estella Jones A , Earl Godfrey B and Andrei Zalensky A E
+ Author Affiliations
- Author Affiliations

A The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.

B Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA.

C Institute of Cytology, Russian Academy of Sciences, St Petersburg, 194064, Russia.

D These authors contributed equally to this paper.

E Corresponding author. Email: zalensao@evms.edu

Reproduction, Fertility and Development 21(5) 665-671 https://doi.org/10.1071/RD08269
Submitted: 19 November 2008  Accepted: 20 March 2009   Published: 21 May 2009

Abstract

By fertilisation, two terminally differentiated cells, namely the egg and spermatozoon, are combined to create a totipotent zygote. During this process, the inactive sperm nucleus is transformed into a functional male pronucleus. Recent studies demonstrate that human sperm chromatin has an elaborate multilevel organisation, but almost nothing is known about how sperm chromosomes are transformed during fertilisation. Because of ethical reasons and technical complications, experimentation with human embryos is generally unworkable and adequate model systems are necessary to study the formation of male pronuclei. Here, we analyse remodelling of human sperm chromatin and chromosome architecture in Xenopus egg extracts using immunofluorescent localisation of protamines and centromere protein A, as well as fluorescence in situ hybridisation localisation of major α-satellite DNA and whole chromosome territory (CT). We demonstrate noticeable relocalisation of centromeres and remodelling of CT during the decondensation–recondensation cycle, mimicking cellular events that occur in the paternal genome in vivo during fertilisation.


Acknowledgements

This work was supported by grant from The Jones Foundation and, in part, by a National Institutes of Health grant (HD-042748) to A.Z.


References

Adenot, P. G. , Szollosi, M. S. , Geze, M. , Renard, J. P. , and Debey, P. (1991). Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol. Reprod. Dev. 28, 23–34.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Balhorn R., Cosman M., Thornton K., Krishnan V. V., Corzett M., et al. (1999). Protamine-mediated condensation of DNA in mammalian sperm. In ‘The Male Gamete: from Basic Knowledge to Clinical Applications’. (Ed. C. Gagnon.) pp. 55–70. (Cache River Press: Vienna, IL.)

Braun, R. E. (2001). Packaging paternal chromosomes with protamine. Nat. Genet. 28, 10–12.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Menut S., Lemaitre J. M. L., Hair A., and Méchali M. (1999). DNA replication and chromatin assembly using Xenopus eggs or embryos. In ‘Advances in Molecular Biology: A Comparative Methods Approach to the Study of Oocytes and Embryos’. (Ed. J. D. Richter.) pp. 198–226. (Oxford University Press: Oxford.)

Montag, M. , Tok, V. , Liow, S. L. , Bongso, A. , and Ng, S. C. (1992). In vitro decondensation of mammalian sperm and subsequent formation of pronuclei-like structures for micromanipulation. Mol. Reprod. Dev. 33, 338–346.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | World Health Organization (WHO) (1992). ‘Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction.’ 3rd edn. (Cambridge University Press: Cambridge.)

Wu, T. F. , and Chu, D. S. (2008). Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod. Biomed. Online 16, 13–22.
CAS | PubMed | Zalensky A. O. (1998). Genome architecture. In ‘Advances in Genome Biology. Vol. 24’. (Ed. R. S.Verma.) pp. 179–210. (JAI Press: London.)

Zalensky, A. , and Zalenskaya, I. (2007). Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem. Soc. Trans. 35, 609–611.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Zalensky, A. O. , Breneman, J. W. , Zalenskaya, I. A. , Brinkley, B. R. , and Bradbury, E. M. (1993). Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma 102, 509–518.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Zalensky, A. O. , Allen, M. J. , Kobayashi, A. , Zalenskaya, I. A. , and Bradbury, E. M. (1995). Well-defined genome architecture in the human sperm nucleus. Chromosoma 103, 577–590.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Zalensky, A. O. , Siino, J. S. , Gineitis, A. A. , Zalenskaya, I. A. , Tomilin, N. V. , Yau, P. , and Bradbury, E. M. (2002). Human testis/sperm specific histone H2B (hTSH2B): Molecular cloning and characterization. J. Biol. Chem. 277, 43 474–43 480.
Crossref | GoogleScholarGoogle Scholar | CAS |

Zeitlin, S. G. , Patel, S. , Kavli, B. , and Slupphaug, G. (2005). Xenopus CENP-A assembly into chromatin requires base excision repair proteins. DNA Repair 4, 760–772.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |