Prostacyclin stimulates embryonic development via regulation of the cAMP response element-binding protein–cyclo-oxygenase-2 signalling pathway in cattle
Bong-Seok Song A , Ji-Su Kim A , Cheol-Hee Kim B , Yong-Mahn Han C , Dong-Seok Lee D , Kyung-Kwang Lee A and Deog-Bon Koo A EA Center for Regenerative Medicine, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 305-806, Korea.
B Department of Biology, Chungnam National University, Daejeon 305-764, Korea.
C Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.
D School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Puk-ku, Daegu 702-701, Korea.
E Corresponding author. Email: dbkoo@kribb.re.kr
Reproduction, Fertility and Development 21(3) 400-407 https://doi.org/10.1071/RD08180
Submitted: 22 August 2008 Accepted: 17 October 2008 Published: 4 March 2009
Abstract
Prostacyclin (PGI2) in oviducal fluid is synthesised from arachidonic acid by cyclo-oxygenase (COX) and prostacyclin synthetase and enhances the implantation and live birth potential of mouse embryos. In the present study, we investigated the developmental competence of bovine embryos by examining the effects of the PGI2 analogue iloprost on blastocyst development, quality and COX-2 expression during IVF and somatic cell nuclear transfer (SCNT). Bovine IVF and SCNT embryos were cultured in CR1-aa medium supplemented with 0.3% bovine serum albumin in either the presence or absence of 1 μm iloprost at 38.5°C and 5% CO2. After 3 days of culture, cleaved embryos were cultured for 4 days in the same medium supplemented with 10% fetal bovine serum. For both IVF and SCNT embryos, iloprost improved the blastocyst developmental rate and cell numbers. In the presence of iloprost, the proportion of expanded blastocysts was significantly higher among the IVF embryos and fewer apoptotic cell nuclei were observed. Expression of COX-2 mRNA and protein, evaluated using real-time polymerase chain reaction and immunoblotting, respectively, was increased in the presence of iloprost. These results suggest that PGI2 improves the developmental competence of embryos via regulation of the cAMP response element-binding protein–COX-2 signalling pathway in cattle.
Additional keyword: iloprost.
Acknowledgement
This study was supported by a grant (2006-04082) from KOSEF, Ministry of Science and Technology, Republic of Korea.
Arbab, F. , Goldsby, J. , Matijevic-Aleksic, N. , Huang, G. , Ruan, K. H. , and Huang, J. C. (2002). Prostacyclin is an autocrine regulator in the contraction of oviductal smooth muscle. Hum. Reprod. 17, 3053–3059.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Bertolini, M. , Mason, J. B. , Beam, S. W. , Carneiro, G. F. , Sween, M. L. , Kominek, D. J. , Moyer, A. L. , Famula, T. R. , Sainz, R. D. , and Anderson, G. B. (2002). Morphology and morphometry of in vivo- and in vitro-produced bovine concepti from early pregnancy to term and association with high birth weights. Theriogenology 58, 973–994.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Betts, D. H. , and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Cibelli, J. B. , Stice, S. L. , Golueke, P. J. , Kane, J. J. , Jerry, J. , Blackwell, C. , Ponce de Leon, F. A. , and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
de Matos, D. G. , Herrera, C. , Cortvrindt, R. , Smitz, J. , Van Soom, A. , Nogueira, D. , and Pasqualini, R. S. (2002). Cysteamine supplementation during in vitro maturation and embryo culture: a useful tool for increasing the efficiency of bovine in vitro embryo production. Mol. Reprod. Dev. 62, 203–209.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Debey, S. , Meyer-Kirchrath, J. , and Schror, K. (2003). Regulation of cyclooxygenase-2 expression by iloprost in human vascular smooth muscle cells. Role of transcription factors CREB and ICER. Biochem. Pharmacol. 65, 979–988.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Giudice, L. C. , Dsupin, B. A. , Irwin, J. C. , and Eckert, R. L. (1992). Identification of insulin-like growth factor binding proteins in human oviduct. Fertil. Steril. 57, 294–301.
| PubMed | CAS |
Heyman, Y. , Chavatte-Palmer, P. , LeBourhis, D. , Camous, S. , Vignon, X. , and Renard, J. P. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Hill, J. R. , Winger, Q. A. , Long, C. R. , Looney, C. R. , Thompson, J. A. , and Westhusin, M. E. (2000). Development rates of male bovine nuclear transfer embryos derived from adult and fetal cells. Biol. Reprod. 62, 1135–1140.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Holm, P. , Booth, P. J. , and Callesen, H. (2002). Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 123, 553–565.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Arbab, F. , Tumbusch, K. J. , Goldsby, J. S. , Matijevic-Aleksic, N. , and Wu, K. K. (2002). Human fallopian tubes express prostacyclin (PGI) synthase and cyclooxygenases and synthesize abundant PGI. J. Clin. Endocrinol. Metab. 87, 4361–4368.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Wun, W. S. , Goldsby, J. S. , Wun, I. C. , Falconi, S. M. , and Wu, K. K. (2003). Prostacyclin enhances embryo hatching but not sperm motility. Hum. Reprod. 18, 2582–2589.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Goldsby, J. S. , and Wun, W. S. (2004a). Prostacyclin enhances the implantation and live birth potentials of mouse embryos. Hum. Reprod. 19, 1856–1860.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Wun, W. S. , Goldsby, J. S. , Matijevic-Aleksic, N. , and Wu, K. K. (2004b). Cyclooxygenase-2-derived endogenous prostacyclin enhances mouse embryo hatching. Hum. Reprod. 19, 2900–2906.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Wun, W. S. , Goldsby, J. S. , Egan, K. , FitzGerald, G. A. , and Wu, K. K. (2007a). Prostacyclin receptor signaling and early embryo development in the mouse. Hum. Reprod. 22, 2851–2856.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Huang, J. C. , Wun, W. S. , Goldsby, J. S. , Wun, I. C. , Noorhasan, D. , and Wu, K. K. (2007b). Stimulation of embryo hatching and implantation by prostacyclin and peroxisome proliferator-activated receptor delta activation: implication in IVF. Hum. Reprod. 22, 807–814.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kane, M. T. , Morgan, P. M. , and Coonan, C. (1997). Peptide growth factors and preimplantation development. Hum. Reprod. Update 3, 137–157.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kang, Y. K. , Koo, D. B. , Park, J. S. , Choi, Y. H. , Chung, A. S. , Lee, K. K. , and Han, Y. M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28, 173–177.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kato, Y. , Tani, T. , and Tsunoda, Y. (2000). Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 120, 231–237.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Keskintepe, L. , Burnley, C. A. , and Brackett, B. G. (1995). Production of viable bovine blastocysts in defined in vitro conditions. Biol. Reprod. 52, 1410–1417.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Kim, J. S. , Cho, Y. S. , Song, B. S. , Wee, G. , Park, J. S. , Choo, Y. K. , Yu, K. , Lee, K. K. , Han, Y. M. , and Koo, D. B. (2008). Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs. Theriogenology 69, 290–301.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Koo, D. B. , Kang, Y. K. , Choi, Y. H. , Park, J. S. , Kim, H. N. , Oh, K. B. , Son, D. S. , Park, H. , Lee, K. K. , and Han, Y. M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lee, K. F. , and Yeung, W. S. (2006). Gamete/embryo–oviduct interactions: implications on in vitro culture. Hum. Fertil. 9, 137–143.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Levy, R. R. , Cordonier, H. , Czyba, J. C. , and Guerin, J. F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–108.
| PubMed | CAS |
Lim, H. , Paria, B. C. , Das, S. K. , Dinchuk, J. E. , Langenbach, R. , Trzaskos, J. M. , and Dey, S. K. (1997). Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91, 197–208.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Lonergan, P. , Fair, T. , Corcoran, D. , and Evans, A. C. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology 65, 137–152.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Moncada, S. , and Vane, J. R. (1978). Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol. Rev. 30, 293–331.
| PubMed | CAS |
Namba, T. , Oida, H. , Sugimoto, Y. , Kakizuka, A. , Negishi, M. , Ichikawa, A. , and Narumiya, S. (1994). cDNA cloning of a mouse prostacyclin receptor. Multiple signaling pathways and expression in thymic medulla. J. Biol. Chem. 269, 9986–9992.
| PubMed | CAS |
Narumiya, S. , Sugimoto, Y. , and Ushikubi, F. (1999). Prostanoid receptors: structures, properties, and functions. Physiol. Rev. 79, 1193–1226.
| PubMed | CAS |
Parrish, J. J. , Susko-Parrish, J. L. , Leibfried-Rutledge, M. L. , Critser, E. S. , Eyestone, W. H. , and First, N. L. (1986). Bovine in vitro fertilization with frozen–thawed semen. Theriogenology 25, 591–600.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rizos, D. , Gutierrez-Adan, A. , Perez-Garnelo, S. , De La Fuente, J. , Boland, M. P. , and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Rosenkrans, C. F. , Zeng, G. Q. , McNamara, G. T. , Schoff, P. K. , and First, N. L. (1993). Development of bovine embryos in vitro as affected by energy substrates. Biol. Reprod. 49, 459–462.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |
Wee, G. , Koo, D. B. , Song, B. S. , Kim, J. S. , Kang, M. J. , Moon, S. J. , Kang, Y. K. , Lee, K. K. , and Han, Y. M. (2006). Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J. Biol. Chem. 281, 6048–6057.
| Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |