Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Multipotential ability of primitive germ cells from neonatal pig testis cultured in vitro

Sandeep Goel A C , Mayako Fujihara A , Kazuo Tsuchiya B , Yuji Takagi B , Naojiro Minami A , Masayasu Yamada A and Hiroshi Imai A D
+ Author Affiliations
- Author Affiliations

A Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.

B Faculty of Agriculture, Shinshu University, Nagano 399-4598, Japan.

C Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India.

D Corresponding author. Email: imai@kais.kyoto-u.ac.jp

Reproduction, Fertility and Development 21(5) 696-708 https://doi.org/10.1071/RD08176
Submitted: 19 August 2008  Accepted: 8 March 2009   Published: 22 May 2009

Abstract

Gonocytes are progenitor-type germ cells that arise from primordial germ cells and differentiate further into spermatogonia, thereby initiating spermatogenesis. In the present study, freshly isolated gonocytes were found to have either weak or no expression of pluripotency determining transcription factors, such as POU5F1, SOX2 and C-MYC. Interestingly, the expression of these transcription factors, as well as other vital transcription factors, such as NANOG, KLF4 and DAZL, were markedly upregulated in cultured cells. Cells in primary cultures expressed specific germ cell and pluripotency markers, such as lectin Dolichos biflorus agglutinin (DBA), KIT, ZBTB16, stage-specific embryonic antigen (SSEA-1), NANOG and POU5F1. Using a monoclonal antibody to specifically identify porcine germ cells, the stem cell potential of fresh and cultured cells was determined with a testis xenotransplantation assay. Colonised porcine germ cells were detected only in mouse testes that were either transplanted with fresh testicular cells or with cells from primary cultures. Interestingly, testes transplanted with cells from primary cultures showed colonisation of germ cells in the interstitial space, reflecting their tumourigenic nature. The formation of teratomas with tissues originating from the three germinal layers following the subcutaneous injection of cells into nude mice from primary cultures confirmed their multipotency. The results of the present study may provide useful information for the establishment of multipotent germ stem cell lines from neonatal pig testis.


Acknowledgements

The authors thank Kazuo Kishimoto and Sachiko Kishimoto for providing testes samples and Dr Miki Sugimoto for critical discussion of this manuscript. This work was supported by a grant (no. 17658123) from the Ministry of Education, Science and Culture (to H.I.).


References

Brinster, R. L. , and Zimmermann, J. W. (1994). Spermatogenesis following male germ-cell transplantation. Proc. Natl Acad. Sci. USA 91, 11 298–11 302.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Goding J. W. (1993). Production of monoclonal antibodies. In ‘Monoclonal Antibodies: Principles and Practice’. 3rd edn. pp. 141–180. (Academic Press: London.)

Goel, S. , Sugimoto, M. , Minami, N. , Yamada, M. , Kume, S. , and Imai, H. (2007). Identification, isolation, and in vitro culture of porcine gonocytes. Biol. Reprod. 77, 127–137.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Goel, S. , Fujihara, M. , Minami, N. , Yamada, M. , and Imai, H. (2008). Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. Reproduction 135, 785–795.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Guan, K. , Nayernia, K. , Maier, L. S. , Wagner, S. , and Dressel, R. , et al. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hamra, F. K. , Chapman, K. M. , Nguyen, D. M. , Williams-Stephens, A. A. , Hammer, R. E. , and Garbers, D. L. (2005). Self renewal, expansion, and transfection of rat spermatogonial stem cells in culture. Proc. Natl Acad. Sci. USA 102, 17 430–17 435.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ji, M. , Minami, N. , Yamada, M. , and Imai, H. (2007). Effect of protopanaxatriol saponin on spermatogenic stem cell survival in busulfan-treated male mice. Reprod. Med. Biol. 6, 99–108.
Crossref | GoogleScholarGoogle Scholar | CAS |

Kanatsu-Shinohara, M. , Ogonuki, N. , Inoue, K. , Miki, H. , Ogura, A. , Toyokuni, S. , and Shinohara, T. (2003). Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol. Reprod. 69, 612–616.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kanatsu-Shinohara, M. , Inoue, K. , Lee, J. , Yoshimoto, M. , and Ogonuki, N. , et al. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kanatsu-Shinohara, M. , Miki, H. , Inoue, K. , Ogonuki, N. , Toyokuni, S. , Ogura, A. , and Shinohara, T. (2005). Long-term culture of mouse male germline stem cells under serum- or feeder-free conditions. Biol. Reprod. 72, 985–991.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kanatsu-Shinohara, M. , Ikawa, M. , Takehashi, M. , Ogonuki, N. , and Miki, H. , et al. (2006). Production of knockout mice by random or targeted mutagenesis in spermatogonial stem cells. Proc. Natl Acad. Sci. USA 103, 8018–8023.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kanatsu-Shinohara, M. , Lee, J. , Inoue, K. , Ogonuki, N. , Miki, H. , Toyokuni, S. , Ikawa, M. , Nakamura, T. , Ogura, A. , and Shinohara, T. (2008a). Pluripotency of a single spermatogonial stem cell in mice. Biol. Reprod. 78, 681–687.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kanatsu-Shinohara, M. , Muneto, T. , Lee, J. , Takenaka, M. , Chuma, S. , Nakatsuji, N. , Horiuchi, T. , and Shinohara, T. (2008b). Long-term culture of male germline stem cells from hamster testes. Biol. Reprod. 78, 611–617.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kubota, H. , Avarbock, M. R. , and Brinster, R. L. (2004). Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol. Reprod. 71, 722–731.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kues, W. A. , Petersen, B. , Mysegades, W. , Carnwath, J. W. , and Niemann, H. (2005). Isolation of murine and porcine fetal stem cells from somatic tissue. Biol. Reprod. 72, 1020–1028.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lee, G. S. , Kim, H. S. , Lee, S. H. , Kang, M. S. , Kim, D. Y. , Lee, C. K. , Kang, S. K. , Lee, B. C. , and Hwang, W. S. (2005). Characterization of pig vasa homolog gene and specific expression in germ cell lineage. Mol. Reprod. Dev. 72, 320–328.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Luo, J. , Megee, S. , Rathi, R. , and Dobrinski, I. (2006). Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia. Mol. Reprod. Dev. 73, 1531–1540.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

McCarrey, J. R. , Geyer, C. B. , and Yoshioka, H. (2005). Epigenetic regulation of testis-specific gene expression. Ann. N. Y. Acad. Sci. 1061, 226–242.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Miyamoto, K. , Furusawa, T. , Ohnuki, M. , Goel, S. , Tokunaga, T. , Minami, N. , Yamada, M. , Ohsumi, K. , and Imai, H. (2007). Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts. Mol. Reprod. Dev. 74, 1268–1277.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nagano, M. , Avarbock, M. R. , Leonida, E. B. , Brinster, C. J. , and Brinster, R. L. (1998). Culture of mouse spermatogonial stem cells. Tissue Cell 30, 389–397.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nagano, M. , Ryu, B. Y. , Brinster, C. J. , Avarbock, M. R. , and Brinster, R. L. (2003). Maintenance of mouse male germ line stem cells in vitro. Biol. Reprod. 68, 2207–2214.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nemer, G. , and Nemer, M. (2003). Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev. Biol. 254, 131–148.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Niwa, H. (2007). How is pluripotency determined and maintained? Development 134, 635–646.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ogawa, T. , Aréchaga, J. M. , Avarbock, M. R. , and Brinster, R. L. (1997). Transplantation of testis germinal cells into mouse seminiferous tubules. Int. J. Dev. Biol. 41, 111–122.
PubMed |  CAS |

Onishi, A. , Iwamoto, M. , Akita, T. , Mikawa, S. , Takeda, K. , Awata, T. , Hanada, H. , and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ryu, B. Y. , Kubota, H. , Avarbock, M. R. , and Brinster, R. L. (2005). Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc. Natl Acad. Sci. USA 102, 14 302–14 307.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sasaki, A. , Kitadai, Y. , Ito, M. , Tanaka, S. , Yoshihara, M. , Haruma, K. , and Chayama, K. (2004). Mucin phenotype and background mucosa of intramucosal differentiated-type adenocarcinoma of the stomach. Oncology 66, 379–387.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Solter, D. , and Knowles, B. B. (1978). Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc. Natl Acad. Sci. USA 75, 5565–5569.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Soudais, C. , Bielinska, M. , Heikinheimo, M. , MacArthur, C. A. , Narita, N. , Saffitz, J. E. , Simon, M. C. , Leiden, J. M. , and Wilson, D. B. (1995). Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro. Development 121, 3877–3888.
PubMed |  CAS |

Takahashi, K. , and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tokunaga, Y. , Imai, S. , Torii, R. , and Maeda, T. (1999). Cytoplasmic liberation of protein gene product 9.5 during the seasonal regulation of spermatogenesis in the monkey (Macaca fuscata). Endocrinology 140, 1875–1883.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yen, P. H. (2004). Putative biological functions of the DAZ family. Int. J. Androl. 27, 125–129.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |