Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of duration of oocyte maturation on the kinetics of cleavage, embryo yield and sex ratio in cattle

Dimitrios Rizos A C , Pablo Bermejo-Alvarez A , Alfonso Gutierrez-Adan A and Patrick Lonergan B
+ Author Affiliations
- Author Affiliations

A Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Ctra de la Coruña Km 5.9, Madrid 28040, Spain.

B School of Agriculture, Food Science and Veterinary Medicine, College of Life Science, University College, Dublin, Ireland.

C Corresponding author. Email: drizos@inia.es

Reproduction, Fertility and Development 20(6) 734-740 https://doi.org/10.1071/RD08083
Submitted: 24 April 2008  Accepted: 2 June 2008   Published: 9 July 2008

Abstract

The aim of the present study was to examine the effect of maturation for 16 v. 24 h on the kinetics of development and the sex ratio of bovine embryos. Oocytes were inseminated at 16 or 24 h after the beginning of maturation using frozen–thawed bull semen. Two-cell embryos at 24, 28, 32, 36, 40, 44 and 48 h post-insemination (hpi) and blastocysts at Days 6, 7 and 8 from both groups were snap-frozen individually and stored at –80°C until determination of embryo sex. Insemination at 16 h resulted in a lower cleavage rate at 48 hpi than insemination at 24 h (70.6% v. 77.1%, respectively, P < 0.05). In terms of the evolution of cleavage divisions, insemination at 24 h resulted in a typical pattern of cleavage such that by 32 hpi, ~58% of presumptive zygotes had cleaved. In contrast, first cleavage following insemination at 16 h was significantly slower such that by 32 hpi, ~35% of presumptive zygotes had cleaved. Duration of IVM did not affect blastocyst yield (~37%). The overall sex ratio of 2-cell embryos at 48 hpi differed from 1 : 1 in favour of males in both groups (24 h: 55.9 v. 44.1%; 16 h: 59.1 v. 40.9%, P < 0.05). Similarly, the overall sex ratio of blastocysts differed from 1 : 1 in both groups (24 h: 59.7 v. 40.3%; 16 h: 58.5 v. 41.5%, P < 0.05). In conclusion, timing of gamete interaction and maturity of the oocyte at the time of the interaction can affect the kinetics of the early cleavage divisions but has no effect on the sex ratio of the embryos produce.

Additional keywords: IVM, PCR.


Acknowledgements

This work was supported by the grants, AGL2006–05616 and AT2006–003 to Dr Dimitrios Rizos and AGL2006–04799 to Dr Alfonso Gutiérrez-Adán, from the Spanish Ministry of Science and Technology. Pablo Bermejo-Álvarez was supported by a FPU grant from the Spanish Ministry of Education and Science. Dr Patrick Lonergan is funded by Science Foundation Ireland.


References

Agung, B. , Otoi, T. , Wongsrikeao, P. , Taniguchi, M. , Shimizu, R. , Watari, H. , and Nagai, T. (2006). Effect of maturation culture period of oocytes on the sex ratio of in vitro-fertilized bovine embryos. J. Reprod. Dev. 52, 123–127.
Crossref | GoogleScholarGoogle Scholar | PubMed | Jobst S. M., Nebel R. L. (1998) Does timing of insemination affect gender of the resultant calf? J. Dairy Sci. 81, 244. [Abstract]

Kochhar, H. S. , Kochhar, K. P. , Basrur, P. K. , and King, W. A. (2003). Influence of the duration of gamete interaction on cleavage, growth rate and sex distribution of in vitro-produced bovine embryos. Anim. Reprod. Sci. 77, 33–49.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lazzari, G. , Wrenzycki, C. , Herrmann, D. , Duchi, R. , Kruip, T. , Niemann, H. , and Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 67, 767–775.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. , Khatir, H. , Carolan, C. , and Mermillod, P. (1997). Bovine blastocyst production in vitro after inhibition of oocyte meiotic resumption for 24 h. J. Reprod. Fertil. 109, 355–365.
PubMed |

Lonergan, P. , Khatir, H. , Piumi, F. , Rieger, D. , Humblot, P. , and Boland, M. P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–167.
PubMed |

Lonergan, P. , Rizos, D. , Gutierrez-Adan, A. , Moreira, P. M. , Pintado, B. , and Boland, M. P. (2003). Temporal divergence in the pattern of messenger RNA expression in bovine embryos cultured from the zygote to blastocyst stage in vitro or in vivo. Biol. Reprod. 69, 1424–1431.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. , Gervi-Pedersen, H. , Rizos, D. , Greve, T. , Thomsen, P. D. , Fair, T. , Evans, A. , and Boland, M. P. (2004). Effect of the post-fertilization culture environment on the incidence of chromosome aberrations in bovine blastocysts. Biol. Reprod. 71, 1096–1100.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Madrid-Bury, N. , Fernández, R. , Jiménez, A. , Pérez-Garnelo, S. , Moreira, P. N. , Pintado, B. , de la Fuente, J. , and Gutiérrez-Adán, A. (2003). Effect of ejaculate, bull, and a double swim-up sperm processing method on sperm sex ratio. Zygote 11, 229–235.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Manna, L. , Neglia, G. , Marino, M. , Gasparrini, B. , Di Palo, R. , and Zicarelli, L. (2003). Sex determination of buffalo embryos (Bubalus bubalis) by polymerase chain reaction. Zygote 11, 17–22.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martinez, F. , Kaabi, M. , Martinez-Pastor, F. , Alvarez, M. , Anel, E. , Boixo, J. C. , de Paz, P. , and Anel, L. (2004). Effect of the interval between estrus onset and artificial insemination on sex ratio and fertility in cattle: a field study. Theriogenology 62, 1264–1270.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Penfold, L. M. , Holt, C. , Holt, W. V. , Welch, G. R. , Cran, D. G. , and Johnson, L. A. (1998). Comparative motility of X and Y chromosome-bearing bovine sperm separated on the basis of DNA content by flow sorting. Mol. Reprod. Dev. 50, 323–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pergament, E. , Toydemir, P. B. , and Fiddler, M. (2002). Sex ratio: a biological perspective of ‘Sex and the City’. Reprod. Biomed. Online 5, 43–46.
PubMed |

Pursley, J. R. , Silcox, R. W. , and Wiltbank, M. C. (1998). Effect of time of artificial insemination on pregnancy rates, calving rates, pregnancy loss, and gender ratio after synchronization of ovulation in lactating dairy cows. J. Dairy Sci. 81, 2139–2144.
PubMed |

Rizos, D. , Ward, F. , Duffy, P. , Boland, M. P. , and Lonergan, P. (2002a). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rizos, D. , Fair, T. , Papadopoulos, S. , Boland, M. P. , and Lonergan, P. (2002b). Developmental, qualitative and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol. Reprod. Dev. 62, 320–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rizos, D. , Lonergan, P. , Boland, M. P. , Arroyo-Garcia, R. , Pintado, B. , de la Fuente, J. , and Gutierrez-Adan, A. (2002c). Analysis of differential mRNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol. Reprod. 66, 589–595.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rizos, D. , Gutiérrez-Adán, A. , Pérez-Garnelo, S. , de la Fuente, J. , Boland, M. P. , and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roelofs, J. B. , Bouwman, E. B. , Pedersen, H. G. , Rasmussen, Z. R. , Soede, N. M. , Thomsen, P. D. , and Kemp, B. (2006). Effect of time of artificial insemination on embryo sex ratio in dairy cattle. Anim. Reprod. Sci. 93, 366–371.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rorie, R. W. (1999). Effect of timing of artificial insemination on sex ratio. Theriogenology 52, 1273–1280.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rorie, R. W. , Lester, T. D. , Lindsey, B. R. , and McNew, R. W. (1999). Effect of timing of artificial insemination on gender ratio in beef cattle. Theriogenology 52, 1035–1041.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Seidel, G. E. (2003). Sexing mammalian sperm – intertwining of commerce, technology, and biology. Anim. Reprod. Sci. 79, 145–156.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Seidel, G. E. (2007). Overview of sexing sperm. Theriogenology 68, 443–446.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shoukir, Y. , Campana, A. , Farley, T. , and Sakkas, D. (1997). Early cleavage of in vitro-fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum. Reprod. 12, 1531–1536.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ward, F. , Rizos, D. , Corridan, D. , Quinn, K. , Boland, M. , and Lonergan, P. (2001). Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Mol. Reprod. Dev. 60, 47–55.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wehner, G. R. , Wood, C. , Tague, A. , Barker, D. , and Hubert, H. (1997). Efficiency of the OVATEC unit for estrus detection and calf sex control in beef cows. Anim. Reprod. Sci. 46, 27–34.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xu, K. P. , Yadav, B. R. , King, W. A. , and Betteridge, K. G. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 249–252.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yadav, B. R. , King, W. A. , and Betteridge, K. J. (1993). Relationships between the completion of first cleavage and the chromosomal complement, sex and developmental rates of bovine embryos generated in vitro. Mol. Reprod. Dev. 36, 434–439.
Crossref | GoogleScholarGoogle Scholar | PubMed |