Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Molecular control of mitochondrial function in developing rhesus monkey oocytes and preimplantation-stage embryos

N. R. Mtango A E , A. J. Harvey C E , K. E. Latham A B and C. A. Brenner C D F
+ Author Affiliations
- Author Affiliations

A The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA.

B Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.

C Department of Physiology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.

D Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.

E These authors contributed equally to this study.

F Corresponding author. Email: cbrenner@med.wayne.edu

Reproduction, Fertility and Development 20(7) 846-859 https://doi.org/10.1071/RD08078
Submitted: 18 April 2008  Accepted: 21 July 2008   Published: 16 September 2008

Abstract

The mitochondrion undergoes significant functional and structural changes, as well as an increase in number, during preimplantation embryonic development. The mitochondrion generates ATP and regulates a range of cellular processes, such as signal transduction and apoptosis. Therefore, mitochondria contribute to overall oocyte quality and embryo developmental competence. The present study identified, for the first time, the detailed temporal expression of mRNAs related to mitochondrial biogenesis in rhesus monkey oocytes and embryos. Persistent expression of maternally encoded mRNAs was observed, in combination with transcriptional activation and mRNA accumulation at the eight-cell stage, around the time of embryonic genome activation. The expression of these transcripts was significantly altered in oocytes and embryos with reduced developmental potential. In these embryos, most maternally encoded transcripts were precociously depleted. Embryo culture and specific culture media affected the expression of some of these transcripts, including a deficiency in the expression of key transcriptional regulators. Several genes involved in regulating mitochondrial transcription and replication are similarly affected by in vitro conditions and their downregulation may be instrumental in maintaining the mRNA profiles of mitochondrially encoded genes observed in the present study. These data support the hypothesis that the molecular control of mitochondrial biogenesis, and therefore mitochondrial function, is impaired in in vitro-cultured embryos. These results highlight the need for additional studies in human and non-human primate model species to determine how mitochondrial biogenesis can be altered by oocyte and embryo manipulation protocols and whether this affects physiological function in progeny.

Additional keywords: gene regulation, macaque, mitochondrial DNA transcription factors.


Acknowledgements

The authors thank Bela Patel, Malgorzata McMenamin, Judy Procknow and Ann Marie Paprocki for their technical assistance. The authors also thank R. Dee Schramm for his contribution to the development of the PREGER resource. This work was supported by a research resource grant from the National Centers for Research Resources (RR15253) and CA95569 to K.L. and a National Centers for Research Resources grant (RR021881) to C.B.


References

Acton, B. M. , Jurisicova, A. , Jurisica, I. , and Casper, R. F. (2004). Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol. Hum. Reprod. 10, 23–32.
Crossref | GoogleScholarGoogle Scholar | PubMed | Latham K. E., De La Casa E., and Schultz R. (1999). Analysis of mRNA expression during preimplantation development. In ‘Methods in Molecular Biology: Developmental Biology Protocols’. (Eds R. S. Tuan and C. W. Lo.) pp. 315–331. (Humana Press: Totowa, NJ.)

Lee, D. Y. , and Clayton, D. A. (1996). Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J. Biol. Chem. 271, 24 262–24 269.
PubMed | Rozen S., and Skaletsky H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Krawetz and S. Misener.) pp. 365–386. (Humana Press: Totowa, NJ.)

Scarpulla, R. C. (2006). Nuclear control of respiratory gene expression in mammalian cells. J. Cell. Biochem. 97, 673–683.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 88, 611–638.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schramm, R. D. , and Bavister, B. D. (1994). Follicle-stimulating hormone priming of rhesus monkeys enhances meiotic and developmental competence of oocytes matured in vitro. Biol. Reprod. 51, 904–912.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schramm, R. D. , and Bavister, B. D. (1995). Effects of granulosa cells and gonadotrophins on meiotic and developmental competence of oocytes in vitro in non-stimulated rhesus monkeys. Hum. Reprod. 10, 887–895.
PubMed |

Schramm, R. D. , and Bavister, B. D. (1996). Granulosa cells from follicle stimulating hormone-primed monkeys enhance the development competence of in-vitro-matured oocytes from non-stimulated rhesus monkeys. Hum. Reprod. 11, 1698–1702.
PubMed |

Shadel, G. S. , and Clayton, D. A. (1997). Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem. 66, 409–435.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, L. C. , and Alcivar, A. A. (1993). Cytoplasmic inheritance and its effects on development and performance. J. Reprod. Fertil. Suppl. 48, 31–43.
PubMed |

Spikings, E. C. , Alderson, J. , and John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Squirrell, J. M. , Lane, M. , and Bavister, B. D. (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol. Reprod. 64, 1845–1854.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Squirrell, J. M. , Schramm, R. D. , Paprocki, A. M. , Wokosin, D. L. , and Bavister, B. D. (2003). Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc. Microanal. 9, 190–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steuerwald, N. , Barritt, J. A. , Adler, R. , Malter, H. , Schimmel, T. , Cohen, J. , and Brenner, C. A. (2000a). Quantification of mtDNA in single oocytes, polar bodies and subcellular components by real-time rapid cycle fluorescence monitored PCR. Zygote 8, 209–215.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steuerwald, N. , Cohen, J. , Herrera, R. J. , and Brenner, C. A. (2000b). Quantification of mRNA in single oocytes and embryos by real-time rapid cycle fluorescence monitored RT-PCR. Mol. Hum. Reprod. 6, 448–453.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sturmey, R. G. , and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Taylor, K. D. , and Piko, L. (1995). Mitochondrial biogenesis in early mouse embryos: expression of the mRNAs for subunits IV, Vb, and VIIc of cytochrome c oxidase and subunit 9 (P1) of H(+)-ATP synthase. Mol. Reprod. Dev. 40, 29–35.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thundathil, J. , Filion, F. , and Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Trimarchi, J. R. , Liu, L. , Porterfield, D. M. , Smith, P. J. , and Keefe, D. L. (2000). Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol. Reprod. 62, 1866–1874.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tyynismaa, H. , Sembongi, H. , Bokori-Brown, M. , Granycome, C. , Ashley, N. , Poulton, J. , Jalanko, A. , Spelbrink, J. N. , Holt, I. J. , and Suomalainen, A. (2004). Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum. Mol. Genet. 13, 3219–3227.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tyynismaa, H. , Mjosund, K. P. , Wanrooij, S. , Lappalainen, I. , Ylikallio, E. , Jalanko, A. , Spelbrink, J. N. , Paetau, A. , and Suomalainen, A. (2005). Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc. Natl Acad. Sci. USA 102, 17 687–17 692.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–280.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. , Bell, H. , and Weipz, D. (1990). Cellular and developmental biological aspects of bovine meiotic maturation, fertilization, and preimplantation embryogenesis in vitro. J. Electron Microsc. Tech. 16, 298–323.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. , Davis, P. , and Alexander, S. (2000). Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum. Reprod. 15, 2621–2633.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vassena, R. , Dee Schramm, R. , and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 72, 430–436.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Virbasius, J. V. , and Scarpulla, R. C. (1994). Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc. Natl Acad. Sci. USA 91, 1309–1313.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wanrooij, S. , Goffart, S. , Pohjoismaki, J. L. , Yasukawa, T. , and Spelbrink, J. N. (2007). Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucleic Acids Res. 35, 3238–3251.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilding, M. , Dale, B. , Marino, M. , di Matteo, L. , Alviggi, C. , Pisaturo, M. L. , Lombardi, L. , and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zheng, P. , Patel, B. , McMenamin, M. , Reddy, S. E. , Paprocki, A. M. , Schramm, R. D. , and Latham, K. E. (2004). The primate embryo gene expression resource: a novel resource to facilitate rapid analysis of gene expression patterns in non-human primate oocytes and preimplantation stage embryos. Biol. Reprod. 70, 1411–1418.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zheng, P. , Patel, B. , McMenamin, M. , Moran, E. , Paprocki, A. M. , Kihara, M. , Schramm, R. D. , and Latham, K. E. (2005). Effects of follicle size and oocyte maturation conditions on maternal messenger RNA regulation and gene expression in rhesus monkey oocytes and embryos. Biol. Reprod. 72, 890–897.
Crossref | GoogleScholarGoogle Scholar | PubMed |