Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The effect of the breeding season, cryopreservation and physiological extender on selected sperm and semen parameters of four ferret species: implications for captive breeding in the endangered black-footed ferret

G. van der Horst A C , R. M. Kitchin B , M. van der Horst A and R. W. Atherton B
+ Author Affiliations
- Author Affiliations

A Department of Medical Biosciences, University of the Western Cape, Private Bag X17, Bellville 7537, South Africa.

B Department of Zoology and Physiology, University of Wyoming, Box 3166, Laramie, WY 82071, USA.

C Corresponding author. Email: gvdhorst@uwc.ac.za

Reproduction, Fertility and Development 21(2) 351-363 https://doi.org/10.1071/RD08075
Submitted: 14 April 2008  Accepted: 29 September 2008   Published: 27 January 2009

Abstract

In the present investigation, comparative baseline information on selected sperm characteristics of ejaculate spermatozoa of the domestic (Mustela putorius furo), fitch (Mustela sp.) and black-footed ferrets (Mustela nigripes) and the Siberian polecat (Mustela eversmanni) are presented. The main emphasis was to establish differences and similarities among these species in relation to semen and sperm quality during the breeding season, in cryopreservation success and in supporting sperm motility in different extenders or physiological media. The results confirm that most sperm morphology abnormalities were evident during the beginning of the breeding cycle in all four species. No significant interspecies differences were apparent in the sperm attributes examined, for all sampling months during the breeding season. Moreover, all species exhibited comparable patterns of reproductive seasonality. Cryopreservation suppressed sperm characteristics equally in all species studied. Ejaculate spermatozoa of closely related ferret species shared many similar motion characteristics using computer-aided sperm motility analysis. These results suggest that the basic sperm physiology of the ferret species under examination is very similar. Disparate to the interspecies comparisons, there were significant differences for most sperm motion parameters when spermatozoa of any of the ferrets were compared in different extenders. Assisted reproductive technologies developed for use in domestic ferret, fitch ferret or Siberian polecat may be successfully applied to captive breeding of the black-footed ferret using semen during any of the functional breeding months.

Additional keywords: domestic ferret, fitch ferret, reproductive biotechnologies, Siberian polecat, surrogate species.


Acknowledgements

The present research program was funded by the Wyoming Game and Fisheries Department, the United States Forestry Services and a research grant (to R. M. K. and R. W. A.) from the Department of Zoology and Physiology, University of Wyoming, and these organisations are thanked in this regard. Me. K. Nichols is thanked for technical assistance.


References

Anderson E. (1989). The phylogeny of mustelids and the systematics of ferrets. In ‘Conservation Biology and the Black-Footed Ferret’. (Eds U. S. Seal, E. T. Thorne, M. A. Bogen and S. H. Anderson.) pp. 10–20. (Yale University Press: New Haven.)

Anderson, E. , Forrest, S. C. , Clark, T. W. , and Richardson, L. (1986). Paleobiology, biogeography, and systematics of the black-footed ferret, Mustela nigripes (Audubon and Bachman, 1851). Great Basin Nat. Mem. 8, 11–62.
Atherton R. W., Straley M., Curry P. T., Slaughter R., Burgess W., and Kitchin R. M. (1989). Electroejaculation and cryopreservation of domestic ferret sperm. In ‘Conservation Biology and the Black-Footed Ferret’. (Eds U. S. Seal, E. T. Thorne, M. A. Bogen and S. H. Anderson.) pp. 177–189. (Yale University Press: New Haven.)

Blom, E. , and Wolstrup, C. (1976). Zinc is a possible causal factor in the sterilizing sperm tail defect, the “Dag-defect” in Jersey bulls. Nord. Vet. Med. 28, 515–518.
PubMed |  CAS | Durrant B. S., Schuerman T., and Millard S. (1985). Noninvasive semen collection in the cheetah. In ‘Proc. A. Mtg. Am. Assoc. Zoo Pks. Aquar’. pp. 564–567.

Forrest, S. C. , Biggins, D. E. , Richardson, L. , Clark, T. , Campbell, T. M. , Fagerstone, K. A. , and Thorne, E. T. (1988). Population attributes for the black-footed ferret (Mustela nigripes) at Meeteetse, Wyoming, 1981–1985. J. Mammal. 69, 261–273.
Crossref | GoogleScholarGoogle Scholar | Gober P., and Smith M. (1995). Black-footed ferret recovery – at the crossroad. US Fish and Wildlife Service Feature, Series 1. April 1995.

Honacki J. H., Kurman K. E., and Koeppl J. W. (1982). ‘Mammal species of the world.’ (Allen Press: Lawrence, Kansas.)

Howard, J. G. , Bush, M. , De Vos, V. , Schiewe, M. C. , Pursel, V. G. , and Wildt, D. E. (1986). Influence of cryoprotective diluent on post-thaw viability and acrosomal integrity of spermatozoa of the African elephant (Loxodonta africana). J. Reprod. Fertil. 78, 295–306.
PubMed |  CAS | Kitchin R., Curry P., Burgess W., Straley M., Parker M., and Atherton R. W. (1988). Comparison of semen sperm content and sperm motility of European, Siberian and black-footed ferrets. American Society of Andrology Annual Meeting, Houston, Texas.

Mead, R. A. , and Neirinckx, S. (1990). Photomanipulation of sexual maturation and breeding cycle of the steppe polecat (Mustela eversmanni) and other techniques for more rapid propagation of the species. J. Exp. Zool. 255, 232–238.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | O’Brien S. J., Martenson J. S., Eichelberger M. A., Thorne E. T., and Wright F. (1989). Biochemical genetic variation and molecular systematics of the black-footed ferret, Mustela nigripes. In ‘Conservation Biology and the Black-Footed Ferret’. (Eds U. S. Seal, E. T. Thorne, M. A. Bogen and S. H. Anderson.) pp. 21–31. (Yale University Press: New Haven.)

Oakleaf, B. (1989). Putting them back. Wyoming Wildlife LIII, 14–23.
Pursel V. G., Johnson L. A., and Schulman L. L. (1972). Loss of boar sperm fertilizing capacity associated with altered acrosome morphology during in vitro storage. In ‘Proceedings of the 7th International Congress on Animal Reproduction and Artificial Insemination, Munich’. 2, pp. 1595–1600.

Santymire, R. M. , Marinari, P. E. , Kreeger, J. S. , Wildt, D. E. , and Howard, J. G. (2006). Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology 53, 37–55.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | US Fish and Wildlife Service (1988). Black-footed ferret recovery plan. (US Fish and Wildlife Service: Denver, Colorado.)

van der Horst, G. , Kitchin, R. M. , Curry, P. T. , and Atherton, R. W. (1989). The use of membrane filters and osmium tetroxide etching in the preparation of sperm for scanning electron microscopy. J. Electron Microsc. Tech. 12, 65–70.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Zar J. H. (1984). ‘Biostatistical analysis.’ 2nd edn. (Prentice Hall: New Jersey.)