Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Electrolyte distribution and yolk sac morphology in frozen hydrated equine conceptuses during the second week of pregnancy

Laura J. Crews A C , Rudolf O. Waelchli A , Cheng X. Huang B D , Martin J. Canny B D , Margaret E. McCully B E and Keith J. Betteridge A F
+ Author Affiliations
- Author Affiliations

A Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.

B Cryo-Analytical SEM Facility, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

C Present address: University of Minnesota, Veterinary Clinical Sciences Department, College of Veterinary Medicine, 1352 Boyd Ave, St Paul, MN 55108, USA.

D Present address: The Research School of Biological Sciences, Australian National University, Canberra, ACT 0200, Australia.

E Present address: Division of Plant Industry, CSIRO, Canberra, ACT 2601, Australia.

F Corresponding author. Email: kbetter@uoguelph.ca

Reproduction, Fertility and Development 19(7) 804-814 https://doi.org/10.1071/RD07050
Submitted: 14 March 2007  Accepted: 21 May 2007   Published: 8 August 2007

Abstract

To investigate how equine conceptuses expand rapidly despite the hypo-osmolality of their yolk sac fluid, 18 conceptuses, aged 8–12 days and 0.8–10.0 mm in diameter, were examined by cryoscanning electron microscopy and energy dispersive X-ray microanalysis to determine the distribution of Na, Cl and K in their fluids. No osmotic gradient was found between central and peripheral yolk sac fluid. In conceptuses ≥ 6 mm in diameter, the concentrations of both Na and K in the subtrophectodermal compartments were higher than those determined previously in uterine fluid, supporting the concept of osmotic intake of fluid from the uterine environment as far as the compartments. However, electrolyte concentrations in the compartments consistently exceeded those found in the yolk sac, making it likely that ‘uphill’ water transport, rather than a purely osmotic uptake, is involved in yolk sac fluid accumulation. We also speculate that capsule formation could actively contribute to conceptus expansion and thereby to fluid intake.

Additional keywords: blastocyst expansion, cryoscanning electron microscopy, embryonic development, endoderm, energy dispersive X-ray microanalysis.


Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council Canada, the Ontario Ministry of Agriculture, Food and Rural Affairs and the E. P. Taylor Research Foundation for financial support; Lois Betteridge for fabrication of the freezing chamber; Dr Claudia Freyer for provision of unpublished information; and Drs J. I. Raeside, M. A. Hayes, and J. F. Leatherland for their helpful comments on the manuscript.


References

Albihn, A. , Waelchli, R. O. , Samper, J. , Oriol, J. G. , Croy, B. A. , and Betteridge, K. J. (2003). Production of capsular material by equine trophoblast transplanted into immunodeficient mice. Reproduction 125, 855–863.
Crossref | GoogleScholarGoogle Scholar | PubMed | Ginther O. J. (1986). ‘Ultrasonic Imaging and Reproductive Events in the Mare.’ (Equiservices: Cross Plains, WI.)

Ginther O. J. (1992). Embryology and placentation. In ‘Reproductive Biology of the Mare’, 2nd edn. pp. 345–418. (Equiservices: Cross Plains, WI.)

Guillomot M., and Betteridge K. J. (1984). Permeability of the capsule of the equine embryo. In ‘Programme and Abstracts of Papers, 5th Anglo–French Meeting, Society for the Study of Fertility and Société Française pour L’Etude de la Fertilité’. [Abstract]

Hess E. D. (1980). The influence of specimen topography on microanalysis. In ‘X-Ray Microanalysis in Biology’. (Ed. M. A. Hayat.) pp. 241–261. (University Park Press: Baltimore, MD.)

Hiroi, J. , Miyazaki, H. , Katoh, F. , Ohtani-Kaneko, R. , and Kaneko, T. (2005). Chloride turnover and ion-transporting activities of yolk-sac preparations (yolk balls) separated from Mozambique tilapia embryos and incubated in freshwater and seawater. J. Exp. Biol. 208, 3851–3858.
Crossref | GoogleScholarGoogle Scholar | PubMed | King B. F., and Enders A. C. (1993). Comparative development of the mammalian yolk sac. In ‘The Human Yolk Sac and Yolk Sac Tumors’. (Ed. F. Nogales.) pp. 1–31. (Springer-Verlag: New York, NY.)

Larsen, E. H. , Møbjerg, N. , and Sørensen, J. N. (2006). Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport. Acta Physiol. 187, 177–189.
Crossref | GoogleScholarGoogle Scholar | Patten B. M. (1948). ‘Embryology of the Pig’, 3rd edn. (McGraw-Hill: New York, NY.)

Sirois, J. , and Betteridge, K. J. (1988). Transcervical collection of equine conceptuses between 10 and 16 days after ovulation. Theriogenology 30, 1139–1148.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tremoleda, J. L. , Stout, T. A. E. , Lagutina, I. , Lazzari, G. , Bevers, M. M. , Colenbrander, B. , and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tunón, A. M. , Ekwall, H. , Nummijärvi, A. , and Rodríguez-Martinez, H. (2000). X-ray microanalysis of the secretory epithelium of the endometrial glands and intraluminal uterine fluid in oestrus mares. Reprod. Dom. Anim. 35, 221–227.
Crossref | GoogleScholarGoogle Scholar |

Waelchli, R. O. , and Betteridge, K. J. (1996). Osmolality of equine blastocyst fluid from Day 11 to Day 25 of pregnancy. Reprod. Fertil. Dev. 8, 981–988.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waelchli, R. O. , MacPhee, D. J. , Kidder, G. M. , and Betteridge, K. J. (1997). Evidence for the presence of sodium- and potassium-dependent adenosine triphosphatase α1 and β1 subunit isoforms and their probable role in blastocyst expansion in the preattachment horse conceptus. Biol. Reprod. 57, 630–640.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waelchli, R. O. , Jaworski, T. , Ruddock, W. D. J. , and Betteridge, K. J. (2000). Estimation of sodium and potassium concentrations in the uterine fluid of mares by microdialysis and ion chromatography. J. Reprod. Fertil. Suppl. 56, 327–332.


Watson, A. J. , Natale, D. R. , and Barcroft, L. C. (2004). Molecular regulation of blastocyst formation. Anim. Reprod. Sci. 82–83, 583–592.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, F. A. , Sallee, V. L. , and Dietschy, J. M. (1971). Unstirred water layers in intestine: rate determinant of fatty acid absorption from micellar solutions. Science 174, 1031–1033.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeller, U. , and Freyer, C. (2001). Early ontogeny and placentation of the grey short-tailed opossum, Monodelphis domestica (Didelphidae: Marsupialia): contribution to the reconstruction of the marsupial morphotype. J. Zoological Syst. Evol. Res. 39, 137–158.
Crossref | GoogleScholarGoogle Scholar |

Zeuthen, T. (2000). Molecular water pumps. Rev. Physiol. Biochem. Pharmacol. 141, 97–151.
PubMed |