Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Translocation reverses birth sex ratio bias depending on its timing during gestation: evidence for the action of two sex-allocation mechanisms

W. L. Linklater
+ Author Affiliations
- Author Affiliations

A Present address: Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 140, New Zealand.

B Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.

C Email: wayne.linklater@vuw.ac.nz

Reproduction, Fertility and Development 19(7) 831-839 https://doi.org/10.1071/RD07027
Submitted: 11 February 2007  Accepted: 21 May 2007   Published: 8 August 2007

Abstract

Many sex allocation mechanisms are proposed but rarely have researchers considered and tested more than one at a time. Four facultative birth sex ratio (BSR) adjustment mechanisms are considered: (1) hormone-induced conception bias; (2) sex-differential embryo death from excess glucose metabolism; (3) sex-differential embryo death from embryo–uterine developmental asynchrony; and (4) pregnancy hormone suppression and resource deprivation. All mechanisms could be switched on by the corticoadrenal stress response. A total of 104 female rhinoceroses (Rhinocerotidae), translocated from 1961 to 2004 at different stages of gestation or conceived soon after arrival in captivity, were used to test for a reversal in BSR bias as evidence for the action of multiple sex-allocation mechanisms. Translocation induced a statistically significant BSR reversal between early gestation (86% male births from 0 to 0.19 gestation) and mid-gestation (38% male from 0.2 to 0.79 gestation). Captivity also induced a strongly male-biased (67% male) BSR for conceptions after arrival in captivity. The results indicate the action of at least two sex-allocation mechanisms operating in sequence, confirm the important role of sex-differential embryo death around implantation and of stress in sex allocation, and lend support to suggestions that sex-differential glucose metabolism by the preimplantation embryo likely plays a role in facultative BSR adjustment.

Additional keywords: conception, embryo, mammal, rhinoceros, stress, zoo studbook


Acknowledgements

The work described herein was supported financially by the International Rhinoceros Foundation. The author thanks and dedicates this manuscript to the late Tom Foose for facilitating the partnership. Thanks too to the many who contributed to the rhinoceros studbooks since their inceptions and Hannelore Mercado and Gabriele Hlavacek in particular for providing me the most recent versions, and Ken McNatty, Elizabeth Berkley and two anonymous reviewers for comments on an earlier version of the manuscript. The author’s work with rhinoceros in southern Africa during the development of the manuscript was also supported by the USA Fish & Wildlife Service administered Rhinoceros and Tiger Conservation Act of 1994 (grant agreement numbers 98210–2-G363, 98210–4-G920, 98210–6-G102) and a National Research Foundation of South Africa, International Scientific Liaison grant (with thanks to Graham Kerley for facilitating). Finally, the author thanks Nanz Zekala and Peter Law for their discussion on this and related topics.


References

Albrecht, E. D. , Nightingale, M. S. , and Townsley, J. D. (1978). Stress-induced decreases in the serum concentration of progesterone in the pregnant baboon. J. Endocrinol. 77, 425–426.
PubMed | Atkinson S. 1997. ‘Possible Determinants of Skewed Natal Sex Ratios in Captive Black and Indian Rhinoceros in North America.’ Internal Report to the International Rhinoceros Foundation. (International Rhinoceros Foundation: Yulee, FL.)

Avery, B. , Schmidt, M. , and Greve, T. (1989). Sex determination of bovine embryos based on embryonic cleavage rates. Acta Vet. Scand. 30, 147–153.
PubMed | Hlavacek G. (2004). ‘International Studbook 2004: Greater One-Horned or Indian Rhinoceros Rhinoceros unicornis Linne, 1758.’ (Zoo Basel: Basel.)

James, W. H. (1987a). The human sex-ratio: 1. A review of the literature. Hum. Biol. 59, 721–752.
PubMed | Linklater W. L. (2006). Does excess circulating glucose in pregnant females drive male-biased birth sex ratios? Beginning a study of the world herd funding by the IRF. In ‘Proceedings of the Australasian Regional Association of Zoological Parks and Aquaria Annual Conference’. (Ed. K. Johnson.) pp. 1–6. (Australasian Regional Association of Zoological Parks and Aquaria: Perth, WA.)

Linklater, W. L. , Cameron, E. Z. , Minot, E. O. , and Stafford, K. J. (2004). Feral horse demography and population growth in the Kaimanawa Ranges, New Zealand. Wildl. Res. 31, 119–128.
Crossref | GoogleScholarGoogle Scholar | Ochs A. (2005a). ‘International Studbook for the Black Rhinoceros, Diceros bicornis (Linne 1758)’, Vol. 10. (Zoologischer Garten Berlin AG: Berlin.)

Ochs A. (2005b). ‘International Studbook for the White Rhinoceros, Ceratotherium simum (Burchell 1817)’, Vol. 10. (Zoologischer Garten Berlin AG: Berlin.)

Owen-Smith R. N. (1988). ‘Megaherbivores: The Influence of Large Body Size on Ecology.’ (Cambridge University Press: Cambridge, UK.)

Parrish, J. J. , Suskoparrish, J. L. , and First, N. L. (1989). Capacitation of bovine sperm by heparin: inhibitory effect of glucose and role of intracellular pH. Biol. Reprod. 41, 683–699.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Patton, M. L. , Swaisgood, R. R. , Czekala, N. M. , White, A. M. , Fetter, G. A. , Montagne, J. P. , Rieches, R. G. , and Lance, V. A. (1999). Reproductive cycle length and pregnancy in the southern white rhinoceros (Ceratotherium simum simum) as determined by fecal pregnane analysis and observations of mating behavior. Zoo Biol. 18, 111–127.
Crossref | GoogleScholarGoogle Scholar |

Peippo, J. , and Bredbacka, P. (1995). Sex-related growth-rate differences in mouse preimplantation embryos in-vivo and in-vitro. Mol. Reprod. Dev. 40, 56–61.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pratt, N. C. , and Lisk, R. D. (1989). Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 87, 763–769.
PubMed |

Pratt, N. C. , and Lisk, R. D. (1991). Role of progesterone in mediating stress-related litter deficits in the golden-hamster (Mesocricetus auratus). J. Reprod. Fertil. 92, 139–146.
PubMed |

Rivers, J. P. W. , and Crawford, M. A. (1974). Maternal nutrition and the sex ratio at birth. Nature 252, 297–298.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roche, J. R. , Lee, J. M. , and Berry, D. P. (2006). Pre-conception energy balance and secondary sex ratio: partial support for the Trivers–Willard hypothesis in dairy cows. J. Dairy Sci. 89, 2119–2125.
PubMed |

Schwarzenberger, F. , Francke, R. , and Goeltenboth, R. (1993). Concentrations of faecal immunoreactive progestagen metabolites during the oestrous cycle and pregnancy in the black rhinoceros (Diceros bicornis michaeli). J. Reprod. Fertil. 98, 285–291.
PubMed |

Schwarzenberger, F. , Tomášová, K. , Holečková, D. , Matern, B. , and Möstl, E. (1996). Measurement of fecal steroids in the black rhinoceros (Diceros bicornis) using group-specific enzyme immunoassays for 20-oxo-pregnanes. Zoo Biol. 15, 159–171.
Crossref | GoogleScholarGoogle Scholar |

Seal, U. , Ozoga, J. , Erickson, A. , and Verme, L. (1972). Effects immobilization on blood analyses of white-tailed deer. J. Wildl. Manage. 36, 1034–1040.
Crossref | GoogleScholarGoogle Scholar |

Seal, U. S. , Barton, R. , Mather, L. , and Gray, C. (1976). Baseline laboratory data for the white rhinoceros (Ceratotherium simum simum). J. Zoo Anim. Med. 7, 11–16.


Sheldon, B. C. , and West, S. A. (2004). Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Teixeira, C. P. , de Azevedo, C. S. , Mendl, M. , Cipreste, C. F. , and Young, R J. (2007). Revisiting translocation and reintroduction programmes: the importance of considering stress. Anim. Behav. 73, 1–13.
Crossref | GoogleScholarGoogle Scholar |

Tinbergen, N. (1963). On aims and methods of ethology. Z. Tierpsychol. 20, 410–433.


Trivers, R. L. , and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tsunoda, Y. , Tokunaga, T. , and Sugie, T. (1985). Altered sex-ratio of live young after transfer of fast- and slow-developing mouse embryos. Gamete Res. 12, 301–304.
Crossref | GoogleScholarGoogle Scholar |

Wauters, L. A. , de Crombrugghe, S. A. , Nour, N. , and Matthysen, E. (1995). Do female roe deer in good condition produce more sons than daughters.  Behav. Ecol. Sociobiol. 37, 189–193.
Crossref | GoogleScholarGoogle Scholar |

Zapata, B. , Gimpel, J. , Bonacic, C. , González, B. A. , Riveros, J. L. , Ramírez, A. M. , Bas, F. , and Macdonald, D. W. (2004). The effect of transport on cortisol, glucose, heart rate, leukocytes and body weight in captive-reared guanacos (Lama guanicoe). Anim. Welf. 13, 439–444.