Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Gene expression and maintenance of pregnancy in bovine: roles of trophoblastic binucleate cell-specific molecules

Kazuyoshi Hashizume A G , Koichi Ushizawa B , Osman V. Patel C , Keiichiro Kizaki A , Kei Imai D , Osamu Yamada E , Haruo Nakano F and Toru Takahashi B
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Medicine, Iwate University, Ueda 3-18-8, Morioka, Iwate 020-8550, Japan.

B National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.

C Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824-1225, USA.

D Department of Technology, National Livestock Breeding Center, Nishigo, Fukushima 961-8511, Japan.

E Miyagi Prefectural Sendai Livestock Hygiene Center, Sendai, Miyagi 983-0832, Japan.

F Department of Biochemistry and Molecular Biology, Health Sciences Centre, Calgary, AB T2N 4NI, Canada.

G Corresponding author. Email: kazuha@iwate-u.ac.jp

Reproduction, Fertility and Development 19(1) 79-90 https://doi.org/10.1071/RD06118
Published: 12 December 2006

Abstract

Cell to cell interaction plays a pivotal role in the regulation of placentogenesis and exchange of stage-specific developmental signals between the fetal and maternal units. Specifically, these interactions are paramount for programmed fetal growth, maternal adaptation to pregnancy and coordination of parturition. However, little is known about the precise regulation of placentation and maintenance of gestation in cattle. Therefore, the aim of the present study was to decipher the complex networks of cell communication to gain an insight into the multifaceted developmental process and understand the profound consequences of flawed communication. In the ruminant, the binucleate cell plays a central role in forming the structures and secretions at the fetomaternal interface that are crucial in establishing and maintaining pregnancy. Herein, we summarise differences in the abundance of specific RNA transcripts in the bovine cotyledon and caruncle using global gene expression profiling and further investigate the relationship of mRNA abundance for selected pregnancy-specific genes of interest (identified from microarray studies) that are localised exclusively to the binucleate cell, such as placental lactogen, prolactin-related proteins and pregnancy-associated glycoproteins. The results suggest that a well-orchestrated transcriptional command from binucleate cells is pivotal to the establishment and progression of pregnancy in cattle.


Acknowledgments

The authors express their sincere thanks to the people who have worked with them as collaborators and contributed to this ongoing investigation into bovine placental function over the past 10 years, including Hiroko Ishiwata, Arata Shimada, Hiroko Nakano, Kanako Kaneyama, Herath Chandra B, Junichi Todoroki, Nobuhiko Yamauchi, Toshiaki Takezawa, Nobuhiko Shioya, Misako Akiyama, Sanae Hamanaka, Seiya Takahashi and Yoshiaki Izaike. The authors also extend their heartfelt gratitude to Dr Gozo Tsujimoto’s group (Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University), especially Susumu Katsuma, Akira Hirasawa, Satoshi Shiojima, Hiroshi Ikawa, Yasuhito Suzuki and Gozo Tsujimoto for the fabrication of the custom cDNA microarray and data analysis. The authors’ work reported herein was supported, in part, by Organised Research Combination System, Hoga-kenkyu (16658105), Kiban B (17380172) from the Ministry of Education, Science and Technology, and Bio-oriented Technology Research Advancement Institute, Japan.


References

Ahrendt, S. A. , Halachmi, S. , Chow, J. T. , Wu, L. , Halachmi, N. , Yang, S. C. , Wehage, S. , Jen, J. , and Sidransky, D. (1999). Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl Acad. Sci. USA 96, 7382–7387.
Crossref | GoogleScholarGoogle Scholar | PubMed | Murphy L. J., and Ballejo G. (1994). Growth factor and cytokine expression in the endometrium. In ‘Molecular Biology of the Female Reproductive System’. (Ed. J. K. Findlay.) pp. 345–378. (Academic Press California: San Diego.)

Murthy, G. S. , Schellenberg, C. , and Friesen, H. G. (1982). Purification and characterization of bovine placental lactogen. Endocrinology 68, 141–146.
Wooding F. B. P., and Flint A. P. F. (1994). Placentation. In ‘Marshall’s Physiology of Reproduction’. (Ed. G. H. Lamming.) pp. 233–460. (Chapman and Hall: London.)

Wooding, F. B. P. , Morgan, G. , Forsyth, I. A. , Butcher, G. , Hutchings, A. , Billingsley, S. A. , and Gluckman, P. D. (1992). Light and electron microscopic studies of cellular localization of oPL with monoclonal and polyclonal antibodies. J. Histochem. Cytochem. 40, 1001–1009.
PubMed |

Wooding, F. B. P. , Morgan, G. , Brandon, M. R. , and Camous, S. (1994). Membrane dynamics during migration of placental cells through trophectodermal tight junctions in sheep and goats. Cell Tissue Res. 276, 387–397.
PubMed |

Wooding, F. B. P. , Morgan, G. , Monaghan, S. , Hamon, M. , and Heap, R. B. (1996). Functional specialization in the ruminant placenta: evidence for two populations of fetal binucleate cells of different selective synthetic capacity. Placenta 17, 75–86.
PubMed |

Wooding, F. B. P. , Roberts, R. M. , and Green, J. A. (2005). Light and electron microscope immunocytochemical studies of the distribution of pregnancy associated glycoproteins (PAGs) throughout pregnancy in the cow: possible functional implications. Placenta 26, 807–827.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xie, S. , Green, J. , Bixby, J. B. , Szafranska, B. , DeMartini, J. C. , Hecht, S. , and Roberts, R. M. (1997). The diversity and evolutionary relationships of the pregnancy-associated glycoproteins, an aspartic proteinase subfamily consisting of many trophoblast-expressed genes. Proc. Natl Acad. Sci. USA 94, 12 809–12 816.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamada, O. , Todoroki, J. , Kizaki, K. , Takahashi, T. , Imai, K. , Patel, O. V. , Schuler, L. A. , and Hashizume, K. (2002). Expression of prolactin-related protein I at the fetomaternal interface during the implantation period in cows. Reproduction 124, 427–437.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamakawa, M. , Tanaka, M. , Koyama, M. , Kagesato, Y. , Watahiki, M. , Yamamoto, M. , and Nakashima, K. (1990). Expression of new members of the prolactin growth hormone gene family in bovine placenta. J. Biol. Chem. 265, 8915–8920.
PubMed |

Yao, J. , Ren, X. , Ireland, J. J. , Coussens, P. M. , Smith, T. P. L. , and Smith, G. W. (2004). Generation of a bovine oocyte cDNA library and microarray: resources for identification of genes important for follicular development and early embryogenesis. Physiol. Genomics 19, 84–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yoshioka, K. , Matsuda, F. , Takakura, K. , Noda, Y. , Imakawa, K. , and Sakai, S. (2000). Determination of genes involved in the process of implantation: application of GeneChip to scan 6500 genes. Biochem. Biophys. Res. Commun. 272, 531–538.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zieler, C. G. , Kessler, M. A. , and Schuler, L. A. (1990). Characterization of a novel prolactin-related protein from bovine fetal placenta. Endocrinology 126, 2377–2382.
PubMed |

Zoli, A. P. , Guilbault, L. A. , Delabaut, P. , Ortiz, W. B. , and Beckers, J. F. (1992). Radioimmunoassay of a bovine pregnancy-associated glycoprotein in serum: its application for pregnancy diagnosis. Biol. Reprod. 46, 83–92.
Crossref | GoogleScholarGoogle Scholar | PubMed |