Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Equine cloning: applications and outcomes

Dirk K. Vanderwall A G , Gordon L. Woods A , Janet F. Roser B , Donald H. Schlafer C , Debra C. Sellon D , David F. Tester E and Kenneth L. White F
+ Author Affiliations
- Author Affiliations

A Northwest Equine Reproduction Laboratory, Department of Animal and Veterinary Science and Center for Reproductive Biology, University of Idaho, Moscow, ID 83844, USA.

B Department of Animal Science, University of California, Davis, CA 95616, USA.

C Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.

D Department of Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.

E Prairie Animal Hospital, Coeur d’Alene, ID 83814, USA.

F Center for Developmental and Molecular Biology, Biotechnology Center, Animal, Dairy and Veterinary Science Department, Utah State University, Logan, UT 84322, USA.

G Corresponding author. Email: dirkv@uidaho.edu

Reproduction, Fertility and Development 18(2) 91-98 https://doi.org/10.1071/RD05130
Submitted: 3 October 2005  Accepted: 3 October 2005   Published: 14 December 2005

Abstract

Cloning is one of several new assisted reproductive techniques being developed for clinical use in the equine industry. Potential uses of equine cloning include: (1) the preservation of genetics from individual animals that would otherwise not be able to reproduce, such as geldings; (2) the preservation of genetic material of endangered and/or exotic species, such as the Mongolian wild horse (Przewalski’s horse); and (3) because of the companion animal role that horses fill for some individuals, it is likely that some horse owners will have individual animals cloned for emotional fulfillment. Although equine cloning has been successful, like other species, it remains a very inefficient process (<3% success). In most species, the inefficiency of cloning results from a high incidence of embryonic, fetal and/or placental developmental abnormalities that contribute to extremely high rates of embryonic loss, abortion and stillbirths throughout gestation and compromised neonatal health after birth. The present review describes some of the ultrasonographic, endocrinological and histopathological characteristics of successful (produced viable offspring) and unsuccessful (resulted in pregnancy failure) cloned equine (mule and horse) pregnancies we have produced. A total of 21 cloned mule pregnancies were established using fetal fibroblast cells, whereas a total of seven cloned horse pregnancies were established using adult cumulus cells. Three of the cloned mule conceptuses were carried to term, resulting in the birth of three healthy clones. This information adds to an accumulating body of knowledge about the outcome of cloned equine pregnancies, which will help to establish when, and perhaps why, many cloned equine pregnancies fail.


Acknowledgments

The authors’ work reported herein was supported by the Idaho Equine Education Bill and by D. W. Jacklin and the Jacklin Family Foundation, Inc. The authors thank Jennifer Dodge and Lillian Sibley for technical assistance.


References

Adams, G. P. , Kastelic, J. P. , Bergfelt, D. R. , and Ginther, O. J. (1987). Effect of uterine inflammation and ultrasonically-detected uterine pathology on fertility in the mare. J. Reprod. Fertil. 35(Suppl.), 445–454.


Allen, W. R. (2000). The physiology of early pregnancy in the mare. Proc. Annu. Conv. Am. Assoc. Equine Practnr 46, 338–354.


Allen, W. R. , Skidmore, J. A. , Stewart, F. , and Antczak, D. F. (1993). Effects of fetal genotype and uterine environment on placental development in equids. J. Reprod. Fertil. 97, 55–60.


Baguisi, A. , Behboodi, E. , Melican, D. T. , Pollock, J. S. , and Destrempes, M. M. , et al. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bergfelt, D. R. , Woods, J. A. , and Ginther, O. J. (1992). Role of the embryonic vesicle and progesterone in embryonic loss in mares. J. Reprod. Fertil. 95, 339–347.
PubMed |

Chevalier, F. , and Palmer, E. (1982). Ultrasonic echography in the mare. J. Reprod. Fertil. 32(Suppl.), 423–430.


Clegg, M. T. , Cole, H. H. , Howard, C. B. , and Pigon, H. (1962). The influence of foetal genotype on equine gonadotrophin secretion. J. Endocrinol. 25, 245–248.
PubMed |

Cox, J. E. (1975). Oestrone and equilin in the plasma of the pregnant mare. J. Reprod. Fertil. 23(Suppl.), 463–468.


Cross, J. C. (2001). Factors affecting the developmental potential of cloned mammalian embryos. Proc. Natl Acad. Sci. USA 98, 5949–5951.
Crossref | GoogleScholarGoogle Scholar |

Dai, Y. , Vaught, T. D. , Boone, J. , Chen, S. H. , and Phelps, C. J. , et al. (2002). Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20, 251–255.
Crossref | GoogleScholarGoogle Scholar | PubMed |

DeLegge, K. , Maserati, M. , Kieser, N. , Delanski, D. , Henderson, B. , Dobbie, T. , Middour, J. , Balladares, J. , and Page, R. (2004). Effect of genotype and cell line on the efficiency of live calf production by somatic cell nuclear transfer. Reprod. Fertil. Dev. 16, 139–140.[Abstract]
Crossref | GoogleScholarGoogle Scholar |

Denning, C. , Burl, S. , Ainslie, A. , Bracken, J. , and Dinnyes, A. , et al. (2001). Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19, 559–562.
Crossref | GoogleScholarGoogle Scholar | PubMed |

De Sousa, P. A. , King, T. , Harkness, L. , Young, L. E. , Walker, S. K. , and Wilmut, I. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod. 65, 23–30.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Edwards, J. L. , Schrick, F. N. , McCracken, M. D. , van Amstel, S. R. , Hopkins, F. M. , Welborn, M. G. , and Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Galli, C. , Lagutina, I. , Crotti, G. , Colleoni, S. , Turini, P. , Ponderato, N. , Duchi, R. , and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ginther, O. J. , Bergfelt, D. R. , Leith, G. S. , and Scraba, S. T. (1985). Embryonic loss in mares: incidence and ultrasonic morphology. Theriogenology 24, 73–86.
Crossref | GoogleScholarGoogle Scholar |

Han, Y. M. , Kang, Y. K. , Koo, D. B. , and Lee, K. K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology 59, 33–44.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hill, J. R. , Burghardt, R. C. , Jones, K. , Long, C. R. , Looney, C. R. , Shin, T. , Spencer, T. E. , Thompson, J. A. , Winger, Q. A. , and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hinrichs, K. (2005). Update on equine ICSI and cloning. Theriogenology 64, 535–541.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Holden, C. (2005). Champion racer cloned. Science 308, 628.


Lewis, I. M. , Peura, T. T. , and Trounson, A. O. (1998). Large-scale applications of cloning technologies for agriculture: an industry perspective. Reprod. Fertil. Dev. 10, 677–681.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Loi, P. , Ptak, G. , Barboni, B. , Fulka, J. , Cappai, P. , and Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 19, 962–964.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McClintock, A. E. (1998). Impact of cloning on cattle breeding systems. Reprod. Fertil. Dev. 10, 667–669.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mitalipov, S. M. , and Wolf, D. P. (2000). Mammalian cloning: possibilities and threats. Ann. Med. 32, 462–468.
PubMed |

Ramirez, S. , Gaunt, S. D. , McClure, J. J. , and Oliver, J. (1999). Detection and effects on platelet function of anti-platelet antibody in mule foals with experimentally induced neonatal alloimmune thrombocytopenia. J. Vet. Intern. Med. 13, 534–539.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renard, J. P. , Zhou, Q. , LeBourhis, D. , Chavatte-Palmer, P. , Hue, I. , Heyman, Y. , and Vignon, X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology 57, 203–222.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Renaudin, C. D. , Troedsson, M. H. T. , Gillis, C. L. , King, V. L. , and Bodena, A. (1997). Ultrasonographic evaluation of the equine placenta by transrectal and transabdominal approach in the normal pregnant mare. Theriogenology 47, 559–573.
Crossref | GoogleScholarGoogle Scholar |

Roser, J. F. , and Lofstedt, R. M. (1989). Urinary eCG patterns in the mare during pregnancy. Theriogenology 32, 607–622.
Crossref | GoogleScholarGoogle Scholar |

Roser, J. F. , and Hughes, J. P. (1991). Prolonged pulsatile administration of gonadotrophin-releasing hormone (GnRH) to fertile stallions. J. Reprod. Fertil. 44(Suppl.), 155–168.


Schnieke, A. E. , Kind, A. J. , Ritchie, W. A. , Mycock, K. , Scott, A. R. , Ritchie, M. , Wilmut, I. , Colman, A. , and Campbell, K. H. (1997). Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Troedsson, M. H. T. , Renaudin, C. D. , Zent, W. W. , and Steiner, J. V. (1997). Transrectal ultrasonography of the placenta in normal mares and mares with pending abortion: a field study. Proc. Annu. Conv. Am. Assoc. Equine Practnr 43, 256–258.


Trounson, A. (2001). Nuclear transfer in human medicine and animal breeding. Reprod. Fertil. Dev. 13, 31–39.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vanderwall, D. K. , Squires, E. L. , Brinsko, S. P. , and McCue, P. M. (2000). Diagnosis and management of abnormal embryonic development characterized by formation of an embryonic vesicle without an embryo in mares. J. Am. Vet. Med. Assoc. 217, 58–63.
PubMed |

Vanderwall, D. K. , Woods, G. L. , Aston, K. I. , Bunch, T. D. , Li, G. , Meerdo, L. N. , and White, K. L. (2004a). Cloned horse pregnancies produced using adult cumulus cells. Reprod. Fertil. Dev. 16, 675–679.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vanderwall, D. K. , Woods, G. L. , Sellon, D. C. , Tester, D. F. , Schlafer, D. H. , and White, K. L. (2004b). Present status of equine cloning and clinical characterization of embryonic, fetal, and neonatal development of three cloned mules. J. Am. Vet. Med. Assoc. 225, 1694–1699.
PubMed |

Wells, D. N. , Misica, P. M. , Tervit, H. R. , and Vivanco, W. H. (1998). Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod. Fertil. Dev. 10, 369–378.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Whitwell, K. E. , and Jeffcott, L. B. (1975). Morphological studies on the fetal membranes of the normal singleton foal at term. Res. Vet. Sci. 19, 44–55.
PubMed |

Woods, G. L. , White, K. L. , Vanderwall, D. K. , Li, G. P. , Aston, K. I. , Bunch, T. D. , Meerdo, L. N. , and Pate, B. J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301, 1063.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Young, L. E. , and Fairburn, H. R. (2000). Improving the safety of embryo technologies: possible role of genomic imprinting. Theriogenology 53, 627–648.
Crossref | GoogleScholarGoogle Scholar | PubMed |