Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants

Kenneth P. McNatty A C D , Stephen Lawrence A , Nigel P. Groome B , Mohammed F. Meerasahib B , Norma L. Hudson A , Lynda Whiting A , Derek A. Heath A and Jennifer L. Juengel A
+ Author Affiliations
- Author Affiliations

A AgResearch, Wallaceville Animal Research Centre, PO Box 40063, Upper Hutt, New Zealand.

B School of BMS, Oxford Brookes University, Gypsy Lane, Headington, Oxford X3OBP, UK.

C Present address: The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.

D Corresponding author. Email: kenneth.mcnatty@vuw.ac.nz

Reproduction, Fertility and Development 18(4) 403-412 https://doi.org/10.1071/RD05104
Submitted: 15 September 2005  Accepted: 1 January 2006   Published: 22 March 2006

Abstract

Sheep (Ovis aries) are a highly diverse species, with more than 900 different breeds that vary significantly in their physiological characteristics, including ovulation rate and fecundity. From examination of inherited patterns of ovulation rate, several breeds have been identified with point mutations in two growth factor genes that are expressed in oocytes. Currently, five different point mutations have been identified in the BMP15 (GDF9b) gene and one in GDF9. Animals heterozygous for the GDF9 and/or the BMP15 mutations have higher ovulation rates than their wild-type counterparts. In contrast, those homozygous for any of the aforementioned BMP15 or GDF9 mutations are sterile owing to arrested follicular development. In bovine and ovine ovaries, GDF9 was expressed exclusively in oocytes throughout follicular growth from the primordial stage of development, whereas in sheep BMP15 was expressed exclusively in oocytes from the primary stage: no data for the ontogeny of BMP15 expression are currently available for cattle. In vitro, ovine growth differentiation factor 9 (oGDF9) has no effect on 3H-thymidine incorporation by either bovine or ovine granulosa cells, whereas ovine bone morphogenetic protein 15 (oBMP15) has modest (1.2- to 1.6-fold; P < 0.05) stimulatory effects. Ovine GDF9 or oBMP15 alone inhibited progesterone production by bovine granulosa cells, whereas in ovine cells only oGDF9 was inhibitory. The effects of oGDF9 and oBMP15 together were often cooperative and not always the same as those observed for each factor alone. Active immunisation of ewes with BMP15 and/or GDF9 peptides affected ovarian follicular development and ovulation rate. Depending on the GDF9 and/or BMP15 vaccine formulation, ovulation rate was either increased or suppressed. A primary and single booster immunisation of ewes with a BMP15 peptide in a water-based adjuvant has led to 19–40% increases in lambs born per ewe lambing. Collectively, the evidence suggests that oocyte signalling molecules have profound effects on reproduction in mammals, including rodents, humans and ruminants. Moreover, in vivo manipulation of these oocyte signalling molecules provides new opportunities for the management of the fertility of ruminants.

Extra keywords: activin-like kinase 6, bone morphogenetic protein 15, growth differentiation factor 9, ovary, ovulation rate.


Acknowledgments

The authors thank Adrian Bibby, Andrea Western, Lisa Haydon, Karen Reader, Stan Lun and Peter Smith for technical assistance, Doug Jensen and Daniel Olliver for animal care and management and George Davis and Janet Crawford for helpful suggestions with the manuscript. The authors acknowledge support from the New Zealand Foundation for Research Science and Technology, the Royal Society of New Zealand Marsden Fund and Ovita Limited, Dunedin, New Zealand.


References

Anderson, L. L. (1977). Development in calves and heifers after hypophysical stalk transection or hypophysectomy. Am. J. Physiol. 232, E497–E503.
PubMed | Bodin L., Lecerf F., Pisselet C., San Cristhal M., Bibe M., and Mulsant P. (2003). How many mutations are associated with increased ovulation rate and little size in progeny of Lacaune meat sheep. In ‘Proceedings of the International Workshop on Major Genes and QTL in Sheep and Goats’. (Ed. L. Bodin.) pp. 2–11. (Institut National De La Recherche Agronomique: Toulouse, France.)

Braw-Tal, R. , and Yossefi, S. (1997). Studies in vivo and in vitro on the initiation of follicle growth in the bovine ovary. J. Reprod. Fertil. 109, 165–171.
PubMed | McNatty K. P. (1982). Ovarian follicular development from the onset of luteal regression in humans and sheep. In ‘Follicular Maturation and Ovulation’. (Eds R. Rolland, E. V. van Hall, S. G. Hillier, K. P. McNatty and J. Schoemaker.) pp. 1–18. (Excerpta Medica: Amsterdam, the Netherlands.)

McNatty, K. P. , Hillier, S. G. , van den Boogaard, A. M. J. , Trimbos-Kemper, T. C. M. , Reichert, L. E. , and van Hall, E. V. (1983). Follicular development during the luteal phase of the human menstrual cycle. J. Clin. Endocrinol. Metab. 56, 1022–1031.
PubMed |

McNatty, K. P. , Heath, D. A. , Lun, S. , Fannin, J. M. , McDiarmid, J. M. , and Henderson, K. M. (1984). Steroidogenesis by bovine theca interna in an in vitro perifusion system. Biol. Reprod. 30, 159–170.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McNatty, K. P. , Lun, S. , Heath, D. A. , Ball, K. , Smith, P. , Hudson, N. L. , McDiarmid, J. , Gibb, M. , and Henderson, K. M. (1986). Differences in ovarian activity between Booroola × Merino ewes which were homozygous, heterozygous or non-carriers of a major gene(s) influencing their ovulation rate. J. Reprod. Fertil. 86, 27–38.


McNatty, K. P. , Heath, D. A. , Hudson, N. , and Clarke, I. J. (1990). Effect of long-term hypophysectomy on ovarian follicle populations and gonadotrophin-induced adenosine cyclic 3′,5′-monophosphate output from follicles from Booroola ewes with or without the F gene. J. Reprod. Fertil. 90, 515–522.
PubMed |

McNatty, K. P. , Heath, D. A. , Lundy, T. , Fidler, A. E. , Quirke, L. , O’Connell, A. , Smith, P. , Groome, N. , and Tisdall, D. J. (1999). Control of early ovarian follicular development. J. Reprod. Fertil. Suppl. 54, 3–16.
PubMed |

McNatty, K. P. , Juengel, J. L. , Wilson, T. , Galloway, S. M. , and Davis, G. H. (2001). Genetic mutations influencing ovulation rate in sheep. Reprod. Fertil. Dev. 13, 549–555.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McNatty, K. P. , Juengel, J. L. , Wilson, T. , Galloway, S. M. , and Davis, G. H. , et al. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61, 339–351.
PubMed |

McNatty, K. P. , Smith, P. , Moore, L. G. , Reader, K. , Lun, S. , Hanrahan, J. P. , Groome, N. P. , Laitinen, M. , Ritvos, O. , and Juengel, J. L. (2005a). Oocyte-expressed genes affecting ovulation rate. Mol. Cell. Endocrinol. 234, 57–66.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McNatty, K. P. , Juengel, J. L. , Reader, K. L. , Lun, S. , and Myllymaa, S. , et al. (2005b). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function. Reproduction 129, 473–480.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McNatty, K. P. , Juengel, J. L. , Reader, K. L. , Lun, S. , and Myllymaa, S. , et al. (2005c). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129, 481–487.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Monget, P. , Fabre, S. , Mulsant, P. , Lecerf, F. , Elsen, J. M. , Mazerbourg, S. , Pisselet, C. , and Monniaux, D. (2002). Regulation of ovarian folliculogenesis by IGF and BMP system in domestic animals. Domest. Anim. Endocrinol. 23, 139–154.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Montgomery, G. W. , Galloway, S. M. , Davis, G. H. , and McNatty, K. P. (2001). Genes controlling ovulation rate in sheep. Reproduction 121, 843–852.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moore, R. K. , Otsuka, F. , and Shimasaki, S. (2003). Molecular basis of bone morphogenetic protein-15 signalling in granulosa cells. J. Biol. Chem. 278, 304–310.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Moore, R. K. , Erickson, G. F. , and Shimasaki, S. (2004). Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals? Trends Endocrinol. Metab. 15, 356–361.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nohe, A. , Keating, E. , Knaus, P. , and Petersen, N. O. (2004). Signal transduction of bone morphogenetic protein receptors. Cell. Signal. 16, 291–299.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Otsuka, F. , Moore, R. K. , Wang, X. , Sharma, S. , Miyoshi, T. , and Shimasaki, S. (2005). Essential role of the oocyte in estrogen amplication of follicle-stimulating hormone signalling in granulosa cells. Endocrinology 146, 3362–3367.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Roh, J. S. , Bondestam, J. , Mazerbourg, S. , Kaivo-Oja, , Groome, N. P. , Ritvos, O. , and Hsueh, A. J. (2003). Growth differentiation factor-9 stimulates inhibin production and activates Smad2 in cultured rat granulosa cells.  144, 172–178.
Crossref | GoogleScholarGoogle Scholar |

Shackell, G. H. , Hudson, N. L. , Heath, D. A. , Lun, S. , Shaw, L. , Condell, L. , Blay, L. R. , and McNatty, K. P. (1993). Plasma gonadotropin concentrations and ovarian characteristics in Inverdale ewes that are heterozygous for a major gene (FecXI) on the X chromosome that influences ovulation rate. Biol. Reprod. 48, 1150–1156.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shimasaki, S. , Moore, R. K. , Otsuka, F. , and Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 25, 72–101.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, P. , Braw-Tal, R. , Corrigan, K. , Hudson, N. L. , Heath, D. A. , and McNatty, K. P. (1994). Ontogeny of ovarian follicle development in Booroola sheep fetuses that are homozygous carriers or non-carriers of the FecB gene. J. Reprod. Fertil. 100, 485–490.
PubMed |

Smith, P. , O, W.-S. , Corrigan, K. A. , Lundy, T. , Davis, G. H. , and McNatty, K. P. (1997). Ovarian morphology and endocrine characteristics of female sheep fetuses that are heterozygous or homozygous for the Inverdale prolificacy gene (FecXI). Biol. Reprod. 57, 1183–1192.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vitt, U. A. , Mazerbourg, S. , Klein, C. , and Hsueh, A. J. (2002). Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol. Reprod. 67, 473–480.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, T. , Wu, X. Y. , Juengel, J. L. , Ross, I. K. , and Lumsden, J. M. , et al. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225–1235.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xia, Y. , Sidis, Y. , Mukherjee, A. , Samad, T. A. , Brenner, G. , Woolf, C. J. , Lin, H. Y. , and Schneyer, A. (2005). Location and action of Dragon (RGMb), a novel BMP co-receptor throughout the reproductive axis. Endocrinology 146, 3614–3621.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yan, C. , Wang, P. , De Mayo, J. , DeMayo, F. J. , and Elvin, J. A. , et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeleznik, A. J. , and Kubik, C. J. (1986). Ovarian responses in macaques to pulsatile infusion of follicle-stimulating hormone and luteinising hormone: increased sensitivity of the maturing follicle to FSH. Endocrinology 119, 2025–2032.
PubMed |