Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Fertility of mice following receipt of ovaries slow cooled in dimethyl sulphoxide or ethylene glycol is largely independent of cryopreservation equilibration time and temperature

M. Snow A , S.-L. Cox A , G. Jenkin A and J. Shaw B C
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Monash University, Clayton, Victoria 3168, Australia.

B Centre for Early Human Development, Monash Institute of Reproduction and Development, Clayton, Victoria 3168, Australia.

C To whom correspondence should be addressed. email: jill.shaw@med.monash.edu.au

Reproduction, Fertility and Development 15(8) 407-414 https://doi.org/10.1071/RD03061
Submitted: 1 September 2003  Accepted: 18 December 2003   Published: 10 February 2004

Abstract

Cryopreservation procedures generally depend on both the cryoprotectant used and the equilibration conditions to which the material is exposed. The aim of the present study was to examine the effect of cryoprotectants (dimethyl sulphoxide (DMSO) and ethylene glycol (EG)) and equilibration conditions (0, 30 or 120 min at 0°C or 120 min at room temperature) on the fertility of mice receiving cryopreserved mouse ovaries. The study compared the fertility of cryopreserved Day 14 mouse pup ovaries following grafting to adult recipient mice for 4 months. There was no effect of the cryoprotectant or equilibration condition used on the interval to the first plugging/mating or on the interval to the birth of the first litter, the size of litters, the number of litters produced or the total number of offspring produced. Despite this, when compared with control females (untreated, sham and fresh transplant) the cryopreservation and transplantation procedures delayed fertility. However, the size of litters was equivalent for all cryopreserved and control groups (P > 0.05). The results show that, for the equilibration conditions examined, DMSO and EG are equally efficient cryoprotective agents for mouse ovarian tissue.


Acknowledgments

M. S. was supported by a Monash University Postgraduate Publications Award for the preparation of this manuscript. This work was funded by the Australian Research Council.


References

Aubard, Y. , Newton, H. , Scheffer, G. , and Gosden, R. (1998). Conservation of the follicular population in irradiated rats by the cryopreservation and orthotopic autografting of ovarian tissue. Eur. J. Obstet. Gynecol. Reprod. Biol. 79, 83–87.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Baird, D. T. , Webb, R. , Campbell, B. K. , Harkness, L. M. , and Gosden, R. G. (1999). Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196°C. Endocrinology 140, 462–471.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Bosch, P. , Hernandez-Fonseca, H. J. , Miller, D. M. , Wininger, J. D. , Massey, J. B. , Lamb, S. V. , and Brackett, B. G. (2004). Development of antral follicles in cryopreserved cat ovarian tissue transplanted to immunodeficient mice. Theriogenology 61, 581–594.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Callejo, J. , Salvador, C. , Miralles, A. , Vilaseca, S. , Lailla, J. M. , and Balasch, J. (2001). Long-term ovarian function evaluation after autografting by implantation with fresh and frozen–thawed human ovarian tissue. J. Clin. Endocrinol. Metab. 86, 4489–4494.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Candy, C. J. , Wood, M. J. , and Whittingham, D. G. (1995). Follicular development in cryopreserved marmoset ovarian tissue after transplantation. Hum. Reprod. 10, 2334–2338.
PubMed |

Candy, C. J. , Wood, M. J. , and Whittingham, D. G. (1997). Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J. Reprod. Fertil. 110, 11–19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Candy, C. J. , Wood, M. J. , and Whittingham, D. G. (2000). Restoration of a normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum. Reprod. 15, 1300–1304.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Carroll, J. , Whittingham, D. G. , Wood, M. J. , Telfer, E. , and Gosden, R. G. (1990). Extra-ovarian production of mature viable mouse oocytes from frozen primary follicles. J. Reprod. Fertil. 90, 321–327.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cleary, M. , Snow, M. , Paris, M. , Shaw, J. , Cox, S. L. , and Jenkin, G. (2001). Cryopreservation of mouse ovarian tissue following prolonged exposure to an ischemic environment. Cryobiology 42, 121–133.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cox, S. L. , Shaw, J. , and Jenkin, G. (1996). Transplantation of cryopreserved fetal ovarian tissue to adult recipients in mice. J. Reprod. Fertil. 107, 315–322.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Demirci, B. , Lornage, J. , Salle, B. , Frappart, L. , Franck, M. , and Guerin, J. F. (2001). Follicular viability and morphology of sheep ovaries after exposure to cryoprotectant and cryopreservation with different freezing protocols. Fertil. Steril. 75, 754–762.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Demirci, B. , Salle, B. , Frappart, L. , Franck, M. , Guerin, J. F. , and Lornage, J. (2002). Morphological alterations and DNA fragmentation in oocytes from primordial and primary follicles after freezing–thawing of ovarian cortex in sheep. Fertil. Steril. 77, 595–600.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Demirci, B. , Lornage, J. , Salle, B. , Poirel, M. T. , Guerin, J. F. , and Franck, M. (2003). The cryopreservation of ovarian tissue: uses and indications in veterinary medicine. Theriogenology 60, 999–1010.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dissen, G. A. , Lara, H. E. , Fahrenbach, W. H. , Costa, M. E. , and Ojeda, S. R. (1994). Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology 134, 1146–1154.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gook, D. A. , Edgar, D. H. , and Stern, C. (1999). Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum. Reprod. 14, 2061–2068.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gook, D. A. , Edgar, D. H. , Borg, J. , Archer, J. , Lutjen, P. J. , and McBain, J. C. (2003). Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum. Reprod. 18, 1772–1781.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gosden, R. G. , Baird, D. T. , Wade, J. C. , and Webb, R. (1994a). Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196°C. Hum. Reprod. 9, 597–603.
PubMed |

Gosden, R. G. , Boulton, M. I. , Grant, K. , and Webb, R. (1994b). Follicular development from ovarian xenografts in SCID mice. J. Reprod. Fertil. 101, 619–623.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Green, S. H. , Smith, A. U. , and Zuckerman, S. (1956). The numbers of oocytes in ovarian autografts after freezing and thawing. J. Endocrinol. 13, 330–334.
PubMed |

Gunasena, K. T. , Lakey, J. R. , Villines, P. M. , Critser, E. S. , and Critser, J. K. (1997a). Allogeneic and xenogeneic transplantation of cryopreserved ovarian tissue to athymic mice. Biol. Reprod. 57, 226–231.
PubMed |

Gunasena, K. T. , Villines, P. M. , Critser, E. S. , and Critser, J. K. (1997b). Live births after autologous transplant of cryopreserved mouse ovaries. Hum. Reprod. 12, 101–106.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gunasena, K. T. , Lakey, J. R. , Villines, P. M. , Bush, M. , Raath, C. , Critser, E. S. , McGann, L. E. , and Critser, J. K. (1998). Antral follicles develop in xenografted cryopreserved African elephant (Loxodonta africana) ovarian tissue. Anim. Reprod. Sci. 53, 265–275.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harp, R. , Leibach, J. , Black, J. , Keldahl, C. , and Karow, A. (1994). Cryopreservation of murine ovarian tissue. Cryobiology 31, 336–343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harris, M. , and Eakin, R. M. (1949). Survival of transplanted ovaries in rats. J. Exp. Zool. 112, 131–163.


Herrera, C. , Conde, P. , Donaldson, M. , Quintans, C. , Cortvrindt, R. , de Matos, D. G. , and Pasqualini, R. S. (2002). Bovine follicular development up to antral stages after frozen–thawed ovarian tissue transplanted into nude mice. Theriogenology 57, 608.


Holt, W. V. , and Pickard, A. R. (1999). Role of reproductive technologies and genetic resource banks in animal conservation. Rev. Reprod. 4, 143–150.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Johnson, L. W. , Moffatt, R. J. , Bartol, F. F. , and Pinkert, C. A. (1996). Optimization of embryo transfer protocols for mice. Theriogenology 46, 1267–1276.
Crossref | GoogleScholarGoogle Scholar |

Jones, E. C. , and Krohn, P. L. (1960). Orthotopic ovarian transplantation in mice. Endocrinology 20, 135–146.


Kim, S. S. , Radford, J. , Harris, M. , Varley, J. , Rutherford, A. J. , Lieberman, B. , Shalet, S. , and Gosden, R. (2001). Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum. Reprod. 16, 2056–2060.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leibo, S. P. , and Songsasen, N. (2002). Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57, 303–326.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mattiske, D. , Shaw, G. , and Shaw, J. M. (2002). Influence of donor age on development of gonadal tissue from pouch young of the tammar wallaby, Macropus eugenii, after cryopreservation and xenografting into mice. Reproduction 123, 143–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McLaren, A. (1970). The fate of very small litters produced by egg transfer in mice. J. Endocrinol. 47, 87–94.
PubMed |

Newton, H. , Aubard, Y. , Rutherford, A. , Sharma, V. , and Gosden, R. (1996). Low temperature storage and grafting of human ovarian tissue. Hum. Reprod. 11, 1487–1491.
PubMed |

Newton, H. , Fisher, J. , Arnold, J. R. , Pegg, D. E. , Faddy, M. J. , and Gosden, R. G. (1998). Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum. Reprod. 13, 376–380.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nowshari, M. A. , and Brem, G. (1998). Effect of cryoprotectants and their concentration on post-thaw survival and development of expanded mouse blastocysts frozen by a simple rapid-freezing procedure. Theriogenology 50, 1001–1013.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oktay, K. , Newton, H. , and Gosden, R. G. (2000). Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil. Steril. 73, 599–603.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oktay, K. , Economos, K. , Kan, M. , Rucinski, J. , Veeck, L. , and Rosenwaks, Z. (2001a). Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA 286, 1490–1493.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Oktay, K. , Kan, M. T. , and Rosenwaks, Z. (2001b). Recent progress in oocyte and ovarian tissue cryopreservation and transplantation. Curr. Opin. Obstet. Gynecol. 13, 263–268.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Otsuka, J. , Takahashi, A. , Nagaoka, M. , and Funabashi, H. (2002). Optimal equilibration conditions for practical vitrification of two-cell mouse embryos. Comp. Med. 52, 342–346.
PubMed |

Paris, M. C. , Snow, M. , Cox, S.-L. , and Shaw, J. M. (2004). Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 61, 277–291.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Parrott, D. V. M. (1960). The fertility of mice with orthotopic ovarian tissue grafts derived from frozen ovarian tissue. J. Reprod. Fertil. 1, 230–241.


Peters, H. (1969). The development of the mouse ovary from birth to maturity. Acta Endocrinol. 62, 98–116.
PubMed |

Radford, J. A. , Lieberman, B. A. , Brison, D. R. , Smith, A. R. , and Critchlow, J. D. , et al. (2001). Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet 357, 1172–1175.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ryder, O. A. , McLaren, A. , Brenner, S. , Zhang, Y. P. , and Benirschke, K. (2000). DNA banks for endangered animal species. Science 288, 275–277.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Salha, O. , Picton, H. , Balen, A. , and Rutherford, A. (2001). Cryopreservation of human ovarian tissue. Hosp. Med. 62, 222–227.
PubMed |

Salle, B. , Lornage, J. , Demirci, B. , Vaudoyer, F. , Poirel, M. T. , Franck, M. , Rudigoz, R. C. , and Guerin, J. F. (1999). Restoration of ovarian steroid secretion and histologic assessment after freezing, thawing, and autograft of a hemi-ovary in sheep. Fertil. Steril. 72, 366–370.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Salle, B. , Demirci, B. , Franck, M. , Rudigoz, R. C. , Guerin, J. F. , and Lornage, J. (2002). Normal pregnancies and live births after autograft of frozen–thawed hemi-ovaries into ewes. Fertil. Steril. 77, 403–408.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Salle, B. , Demirci, B. , Franck, M. , Berthollet, C. , and Lornage, J. (2003). Long-term follow-up of cryopreserved hemi-ovary autografts in ewes: pregnancies, births, and histologic assessment. Fertil. Steril. 80, 172–177.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schnorr, J. , Oehninger, S. , Toner, J. , Hsiu, J. , Lanzendorf, S. , Williams, R. , and Hodgen, G. (2002). Functional studies of subcutaneous ovarian transplants in non-human primates: steroidogenesis, endometrial development, ovulation, menstrual patterns and gamete morphology. Hum. Reprod. 17, 612–619.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Semple, E. , Weissman, A. , Gotlieb, L. , Casper, R. F. , and Leibo, S. P. (2000). Transplantation of fresh or cryopreserved bovine ovarian cortex to NOD-SCID mice. Theriogenology 53, 264.


Shaw, J. M. , Ward, C. , and Trounson, A. O. (1995). Evaluation of propanediol, ethylene glycol, sucrose and antifreeze proteins on the survival of slow-cooled mouse pronuclear and 4-cell embryos. Hum. Reprod. 10, 396–402.
PubMed |

Shaw, J. M. , Cox, S. L. , Trounson, A. O. , and Jenkin, G. (2000a). Evaluation of the long-term function of cryopreserved ovarian grafts in the mouse: implications for human applications. Mol. Cell. Endocrinol. 161, 103–110.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shaw, J. M., Wood, E. C. and  Trounson, A. O. (2000). Transplantation and cryopreservation of ovarian tissue. In ‘Handbook of In Vitro Fertilization’, 2nd edn. (Eds. A. O. Trounson and D. Gardner)  pp. 413–430. (CRC Press: Boca Raton, FL, USA.)

Snow, M. , Cleary, M. , Cox, S. L. , Shaw, J. , Paris, M. , and Jenkin, G. (2001). Comparison of the effects of in vitro and in situ storage on the viability of mouse ovarian tissue collected after death. Reprod. Fertil. Dev. 13, 389–394.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sztein, J. M. , O’Brien, M. J. , Farley, J. S. , Mobraaten, L. E. , and Eppig, J. J. (2000). Rescue of oocytes from antral follicles of cryopreserved mouse ovaries: competence to undergo maturation, embryogenesis, and development to term. Hum. Reprod. 15, 567–571.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vajta, G. , Rindom, N. , Peura, T. T. , Holm, P. , Greve, T. , and Callesen, H. (1999). The effect of media, serum and temperature on in vitro survival of bovine blastocysts after Open Pulled Straw (OPS) vitrification. Theriogenology 52, 939–948.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wolvekamp, M. C. , Cleary, M. L. , Cox, S. L. , Shaw, J. M. , Jenkin, G. , and Trounson, A. O. (2001). Follicular development in cryopreserved common wombat ovarian tissue xenografted to Nude rats. Anim. Reprod. Sci. 65, 135–147.
Crossref | GoogleScholarGoogle Scholar | PubMed |