Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Thyroid function and autoimmunity during ovarian stimulation for intracytoplasmic sperm injection

Gesthimani Mintziori A , Dimitrios G. Goulis A C , Efstratios M. Kolibianakis A , Aristidis Slavakis B , Julia Bosdou A , Grigorios Grimbizis A and Basil C. Tarlatzis A
+ Author Affiliations
- Author Affiliations

A Unit of Reproductive Endocrinology and Unit of Human Reproduction, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, Greece.

B Department of Biochemistry, Hormone Assay Laboratory, Hippokration Hospital, Thessaloniki, Greece.

C Corresponding author. Email: dimitrios.goulis@otenet.gr

Reproduction, Fertility and Development 29(3) 603-608 https://doi.org/10.1071/RD15172
Submitted: 3 May 2015  Accepted: 31 August 2015   Published: 8 October 2015

Abstract

The aim of the present study was to assess changes in thyroid function and thyroid autoimmunity (TAI) throughout ovarian stimulation (OS) for intracytoplasmic sperm injection (ICSI) and the association of these changes with ICSI outcome. A flexible gonadotrophin-releasing hormone (GnRH) antagonist protocol was used in 42 women and their thyroid function and TAI were assessed at baseline and five times during OS (Days 3 and 5 of the menstrual cycle, the day of hCG administration, the day of ovum pick-up and the day of the pregnancy test). The primary outcome measure was the change in thyroid function throughout OS. No overall change was recorded in thyrotropin-stimulating hormone (TSH) concentrations throughout OS (P = 0.066). In women who became pregnant (n = 8), an increase in TSH concentrations was noted on the day of the pregnancy test compared with Day 3 of the menstrual cycle (3.410 ± 1.200 vs 2.014 ± 0.950 μIU mL–1, respectively; P = 0.001; mean ± s.d.). TAI was present in 11 of 42 women. Biochemical pregnancy was negatively correlated with changes in TSH (r = –0.7, P = 0.004). No such association was noted regarding the live birth rate. The present study provides evidence that TSH concentrations could increase during OS, especially in women who become pregnant.

Additional keywords: assisted reproduction, ovary.


References

Aghajanova, L., Lindeberg, M., Carlsson, I. B., Stavreus-Evers, A., Zhang, P., Scott, J. E., Hovatta, O., and Skjoldebrand-Sparre, L. (2009). Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod. Biomed. Online 18, 337–347.
Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKkurjI&md5=8b61aed30b575f59dfd8f6d581fce24dCAS | 19298732PubMed |

Ahmed, I. Z., Eid, Y. M., El, O. H., and Ibrahim, H. R. (2014). Comparison of universal and targeted screening for thyroid dysfunction in pregnant Egyptian women. Eur. J. Endocrinol. 171, 285–291.
Comparison of universal and targeted screening for thyroid dysfunction in pregnant Egyptian women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ygsL7P&md5=aebd1851555b428c4d5591db9f2af7d9CAS | 24842727PubMed |

Amouzegar, A., Mehran, L., Sarvghadi, F., Delshad, H., Azizi, F., and Lazarus, J. H. (2014). Comparison of the American Thyroid Association with the Endocrine Society practice guidelines for the screening and treatment of hypothyroidism during pregnancy. Hormones (Athens) 13, 307–313.
| 25079454PubMed |

Ashkar, F. A., Semple, E., Schmidt, C. H., St, J. E., Bartlewski, P. M., and King, W. A. (2010). Thyroid hormone supplementation improves bovine embryo development in vitro. Hum. Reprod. 25, 334–344.
Thyroid hormone supplementation improves bovine embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlWhtQ%3D%3D&md5=eb37e0d129a4dabd3c6fd717d5db59e0CAS | 19920067PubMed |

Baloch, Z., Carayon, P., Conte-Devolx, B., Demers, L. M., Feldt-Rasmussen, U., Henry, J. F., LiVosli, V. A., Niccoli-Sire, P., John, R., Ruf, J., Smyth, P. P., Spencer, C. A., and Stockigt, J. R. (2003). Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 13, 3–126.
Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease.Crossref | GoogleScholarGoogle Scholar | 12625976PubMed |

Busnelli, A., Somigliana, E., Benaglia, L., Leonardi, M., Ragni, G., and Fedele, L. (2013). In vitro fertilization outcomes in treated hypothyroidism. Thyroid 23, 1319–1325.
In vitro fertilization outcomes in treated hypothyroidism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFerurrJ&md5=5386da6a98627d86283724612e69af93CAS | 23544891PubMed |

Busnelli, A., Somigliana, E., Benaglia, L., Sarais, V., Ragni, G., and Fedele, L. (2014). Thyroid axis dysregulation during in vitro fertilization in hypothyroid-treated patients. Thyroid 24, 1650–1655.
Thyroid axis dysregulation during in vitro fertilization in hypothyroid-treated patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVyrurjF&md5=31aebc91b3a6b58ded4b70842500ea6cCAS | 25089619PubMed |

Colicchia, M., Campagnolo, L., Baldini, E., Ulisse, S., Valensise, H., and Moretti, C. (2014). Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum. Reprod. Update 20, 884–904.
Molecular basis of thyrotropin and thyroid hormone action during implantation and early development.Crossref | GoogleScholarGoogle Scholar | 24943836PubMed |

Davis, L. B., Lathi, R. B., and Dahan, M. H. (2007). The effect of infertility medication on thyroid function in hypothyroid women who conceive. Thyroid 17, 773–777.
The effect of infertility medication on thyroid function in hypothyroid women who conceive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXps12msb8%3D&md5=a6e04bbbd2039f80d50a00dd83f37cc5CAS | 17725435PubMed |

De Groot, L., Abalovich, M., Alexander, E. K., Amino, N., Barbour, L., Cobin, R. H., Eastman, C. J., Lazarus, J. H., Luton, D., Mandel, S. J., Mestman, J., Rovet, J., and Sullivan, S. (2012). Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 97, 2543–2565.
Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGnt7jK&md5=67392d6bdca6db07eb7c6c9e3d85bcd0CAS | 22869843PubMed |

Del Ghianda, S., Loconte, E., Ruggiero, M., Benelli, E., Artini, P. G., Cela, V., Simoncini, T., Latrofa, F., Vitti, P., and Tonacchera, M. (2013). Overt hypothyroidism in a woman undergoing controlled ovarian hyperstimulation. Endocr. Pract. 20, e11–e13.
Overt hypothyroidism in a woman undergoing controlled ovarian hyperstimulation.Crossref | GoogleScholarGoogle Scholar |

Detti, L., Uhlmann, R. A., Fletcher, N. M., Diamond, M. P., and Saed, G. M. (2013). Endometrial signaling pathways during ovarian stimulation for assisted reproduction technology. Fertil. Steril. 100, 889–894.
Endometrial signaling pathways during ovarian stimulation for assisted reproduction technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSmu7jJ&md5=f49387163e248604a053f9188365524eCAS | 23806847PubMed |

Fumarola, A., Grani, G., Romanzi, D., Del, S. M., Bianchini, M., Aragona, A., Tranquilli, D., and Aragona, C. (2013). Thyroid function in infertile patients undergoing assisted reproduction. Am. J. Reprod. Immunol. 70, 336–341.
Thyroid function in infertile patients undergoing assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOgurrM&md5=9daaa6da2a0088f06cbbc90a6b3638baCAS | 23521347PubMed |

Gracia, C. R., Morse, C. B., Chan, G., Schilling, S., Prewitt, M., Sammel, M. D., and Mandel, S. J. (2012). Thyroid function during controlled ovarian hyperstimulation as part of in vitro fertilization. Fertil. Steril. 97, 585–591.
Thyroid function during controlled ovarian hyperstimulation as part of in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Gls78%3D&md5=b1b33f09d2000663643bfd081c24549bCAS | 22260853PubMed |

Haddow, J. E., McClain, M. R., Lambert-Messerlian, G., Palomaki, G. E., Canick, J. A., Cleary-Goldman, J., Malone, F. D., Porter, T. F., Nyberg, D. A., Bernstein, P., and D’Alton, M. E. (2008). Variability in thyroid-stimulating hormone suppression by human chorionic [corrected] gonadotropin during early pregnancy. J. Clin. Endocrinol. Metab. 93, 3341–3347.
Variability in thyroid-stimulating hormone suppression by human chorionic [corrected] gonadotropin during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChurvL&md5=eb64c763a7e5c84de73a74b1e6f42c5fCAS | 18544616PubMed |

Jatzko, B., Vytiska-Bistorfer, E., Pawlik, A., Promberger, R., Mayerhofer, K., and Ott, J. (2014). The impact of thyroid function on intrauterine insemination outcome: a retrospective analysis. Reprod. Biol. Endocrinol. 12, 28.
The impact of thyroid function on intrauterine insemination outcome: a retrospective analysis.Crossref | GoogleScholarGoogle Scholar | 24708845PubMed |

Kaprara, A., and Krassas, G. E. (2008). Thyroid autoimmunity and miscarriage. Hormones (Athens) 7, 294–302.
Thyroid autoimmunity and miscarriage.Crossref | GoogleScholarGoogle Scholar | 19121990PubMed |

Karacan, M., Alwaeely, F., Cebi, Z., Berberoglugil, M., Batukan, M., Ulug, M., Arvas, A., and Camlibel, T. (2013). Effect of antithyroid antibodies on ICSI outcome in antiphospholipid antibody-negative euthyroid women. Reprod. Biomed. Online 27, 376–380.
Effect of antithyroid antibodies on ICSI outcome in antiphospholipid antibody-negative euthyroid women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12is7rM&md5=d586349c5b1aa53216e9daf3a31da630CAS | 23953066PubMed |

Krassas, G. E., Poppe, K., and Glinoer, D. (2010). Thyroid function and human reproductive health. Endocr. Rev. 31, 702–755.
Thyroid function and human reproductive health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsbnK&md5=928329a88937c6cda2b81838d986035cCAS | 20573783PubMed |

Lazarus, J., Brown, R. S., Daumerie, C., Hubalewska-Dydejczyk, A., Negro, R., and Vaidya, B. (2014). 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur. Thyroid J. 3, 76–94.
2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFemtrbE&md5=5161fcac7d022d7a7959c2fa27c97221CAS | 25114871PubMed |

Ludwig, M., Felberbaum, R. E., Devroey, P., Albano, C., Riethmuller-Winzen, H., Schuler, A., Engel, W., and Diedrich, K. (2000). Significant reduction of the incidence of ovarian hyperstimulation syndrome (OHSS) by using the LHRH antagonist Cetrorelix (Cetrotide) in controlled ovarian stimulation for assisted reproduction. Arch. Gynecol. Obstet. 264, 29–32.
Significant reduction of the incidence of ovarian hyperstimulation syndrome (OHSS) by using the LHRH antagonist Cetrorelix (Cetrotide) in controlled ovarian stimulation for assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFartbc%3D&md5=6bb5b7ed380b85a39c96768695626a73CAS | 10985616PubMed |

Mintziori, G., and Goulis, D. G. (2012). In vitro fertilization pregnancy rates in levothyroxine-treated women with hypothyroidism. Thyroid 22, 1298–1299.
In vitro fertilization pregnancy rates in levothyroxine-treated women with hypothyroidism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2ls7vI&md5=d7f26431a4ac7f8652731a5eade17df0CAS | 22966932PubMed |

Mintziori, G., and Goulis, D. G. (2014). TSH threshold for all women undergoing controlled ovarian stimulation. Endocr. Pract. 20, 374.
TSH threshold for all women undergoing controlled ovarian stimulation.Crossref | GoogleScholarGoogle Scholar | 24727663PubMed |

Mintziori, G., Goulis, D. G., Toulis, K. A., Venetis, C. A., Kolibianakis, E. M., and Tarlatzis, B. C. (2011). Thyroid function during ovarian stimulation: a systematic review. Fertil. Steril. 96, 780–785.
Thyroid function during ovarian stimulation: a systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFarsrvE&md5=4a39366aa342146038d1be49bbc703beCAS | 21742326PubMed |

Reinblatt, S., Herrero, B., Correa, J. A., Shalom-Paz, E., Ata, B., Wiser, A., Morris, D., and Holzer, H. (2013). Thyroid stimulating hormone levels rise after assisted reproductive technology. J. Assist. Reprod. Genet. 30, 1347–1352.
Thyroid stimulating hormone levels rise after assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar | 23955685PubMed |

Stagnaro-Green, A., Abalovich, M., Alexander, E., Azizi, F., Mestman, J., Negro, R., Nixon, A., Pearce, E. N., Soldin, O. P., Sullivan, S., and Wiersinga, W. (2011). Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid 21, 1081–1125.
Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum.Crossref | GoogleScholarGoogle Scholar | 21787128PubMed |

Tan, S., Dieterle, S., Pechlivanis, S., Janssen, O. E., and Fuhrer, D. (2014). Thyroid autoantibodies per se do not impair intracytoplasmic sperm injection outcome in euthyroid healthy women. Eur. J. Endocrinol. 170, 495–500.
Thyroid autoantibodies per se do not impair intracytoplasmic sperm injection outcome in euthyroid healthy women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntVeisLo%3D&md5=ef09cb51f9b64e680adf046063b773dcCAS | 24394727PubMed |

Toulis, K. A., Goulis, D. G., Venetis, C. A., Kolibianakis, E. M., Negro, R., Tarlatzis, B. C., and Papadimas, I. (2010). Risk of spontaneous miscarriage in euthyroid women with thyroid autoimmunity undergoing IVF: a meta-analysis. Eur. J. Endocrinol. 162, 643–652.
Risk of spontaneous miscarriage in euthyroid women with thyroid autoimmunity undergoing IVF: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Kisbk%3D&md5=bb810a30b518375fafa30f953229890cCAS | 19955261PubMed |

Uribe, R. M., Zacarias, M., Corkidi, G., Cisneros, M., Charli, J. L., and Joseph-Bravo, P. (2009). 17Beta-oestradiol indirectly inhibits TRH expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure. J. Neuroendocrinol. 21, 439–448.
17Beta-oestradiol indirectly inhibits TRH expression in the hypothalamic paraventricular nucleus of female rats and blunts thyroid axis response to cold exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlamsbg%3D&md5=e2767e1c6ed2058864f53cf39399adc1CAS | 19302192PubMed |

van den Boogaard, E., Vissenberg, R., Land, J. A., van Wely, M., van der Post, J. A. M., Goddijn, M., and Bisschop, P. H. (2011). Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum. Reprod. Update 17, 605–619.
Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review.Crossref | GoogleScholarGoogle Scholar | 21622978PubMed |

Velkeniers, B., Van, M. A., Poppe, K., Unuane, D., Tournaye, H., and Haentjens, P. (2013). Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs. Hum. Reprod. Update 19, 251–258.
Levothyroxine treatment and pregnancy outcome in women with subclinical hypothyroidism undergoing assisted reproduction technologies: systematic review and meta-analysis of RCTs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Cgsrk%3D&md5=488e0d37c1cf2643b64752aae7c1d2ccCAS | 23327883PubMed |

Ziebe, S., Petersen, K., Lindenberg, S., Andersen, A. G., Gabrielsen, A., and Andersen, A. N. (1997). Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization. Hum. Reprod. 12, 1545–1549.
Embryo morphology or cleavage stage: how to select the best embryos for transfer after in-vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svgsVajtQ%3D%3D&md5=a6e06baa260b6be151abe73660fdeb37CAS | 9262293PubMed |