Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

215. Placental expression of uncoupling protein-2 is reduced by glucocorticoid treatment in late pregnancy: implications for placental oxidative stress

M. L. Jones A , P. J. Mark A and B. J. Waddell A
+ Author Affiliations
- Author Affiliations

School of Anatomy & Human Biology, The University of WA, Perth, WA, Australia.

Reproduction, Fertility and Development 20(9) 15-15 https://doi.org/10.1071/SRB08Abs215
Published: 28 August 2008

Abstract

Placental oxidative stress plays a key role in the pathophysiology of placenta-related disorders in humans, most notably in preeclampsia (PE) and intrauterine growth restriction (IUGR). Protection from oxidative stress is provided by antioxidant enzymes including superoxide dismutase-1 and 2 (SOD-1 and –2) and catalase (CAT), which convert reactive oxygen species (ROS) to inert products. It has also been proposed that uncoupling protein-2 (UCP2) may limit oxidative stress by reducing ROS production, but little is known of UCP2 expression in placenta. Here we measured placental UCP2, SOD-1, SOD-2 and CAT mRNA expression (by qRT–PCR) in normal gestation and after glucocorticoid-induced IUGR. The latter was included because glucocorticoids can increase oxidative stress in other tissues, and placental glucocorticoid exposure is elevated in both PE and IUGR. Placentas were collected on days 16 and 22 of normal pregnancy (term = day 23) and on day 22 after dexamethasone treatment (0.75 mg/mL in drinking water from day 13). The two morphologically-distinct regions of the placenta, the junctional (JZ) and labyrinth (LZ) zones, were analysed separately because effectively all growth occurs in the LZ over this period. Expression of UCP2 in LZ exceeded that in JZ (P < 0.001) and increased in both zones between days 16 and 22 (LZ: 2.0-fold; JZ: 3.2-fold). Dexamethasone treatment reduced UCP2 in LZ (44%; P < 0.05) but not in JZ. SOD1 and SOD2 increased with gestational age in LZ (P < 0.01) and JZ (P < 0.05), but neither were affected by dexamethasone. CAT expression was higher (2.4-fold, P < 0.001) in LZ compared with JZ but did not change with gestational age or dexamethasone. In summary, these data suggest that endogenous protection against oxidative stress increases in the rat placenta during late pregnancy. Moreover, this protection may be compromised by reduced placental UCP2 expression in a model of glucocorticoid-induced IUGR.