45 THE EFFECT OF MEIOTIC STAGE OF BOVINE OOCYTES ON THE SURVIVAL OF VITRIFIED CUMULUS–OOCYTE COMPLEXES
J. R. Prentice A B , J. Singh B and M. Anzar A BA Agriculture and Agri-Food Canada, Saskatoon, SK, Canada;
B University of Saskatchewan, Saskatoon, SK, Canada
Reproduction, Fertility and Development 24(1) 135-135 https://doi.org/10.1071/RDv24n1Ab45
Published: 6 December 2011
Abstract
Vitrification is a rapid freezing method in which cells/tissues are frozen in a glass state without ice crystal formation. However, vitrification of bovine oocytes is challenging due to their complex structure and sensitivity to chilling. Oocytes at the germinal vesicle (GV) stage of maturation are thought to be less prone to chromosomal and microtubular damage during cryopreservation because no spindle is present and genetic material is contained within the nucleus. However, immature oocytes are thought to be more sensitive to osmotic stress and have lower cell membrane stability than mature, metaphase II (MII) stage oocytes. The present studies aimed to validate the in vitro culture system used in our laboratory and to evaluate the effect of vitrification of bovine cumulus-oocyte complexes (COC) at different meiotic stages on their in vitro maturation (IVM), cleavage and early embryo development. Analyses were conducted on each dataset with PROC GLIMMIX in SAS using binary distribution (for yes/no response variable) and considering replicate as a random factor. In Experiment 1, meiotic progression of oocytes was evaluated at different time intervals during IVM. The following COC stages were predominantly found at different IVM time intervals: GV (89%) at 0 h, GV (47%) and germinal vesicle breakdown (GVBD; 44%) at 6 h, metaphase I (MI; 90%) at 12 h and MII (84%) at 22 h (n > 62 oocytes at each time group). In Experiment 2, bovine COC at 0, 6, 12 and 22 h of IVM were exposed to vitrification solution (15% dimethyl sulfoxide + 15% ethylene glycol + 0.5 M sucrose + 20% CS in TCM-199), loaded onto a cryotop device and vitrified by plunging in liquid nitrogen. Following warming (1 min in 0.5 M sucrose + 20% CS in TCM-199), COC completed 22 h of IVM and the nuclear stage was evaluated with lamin A/C-4′6-diamidino-2-phenylindole staining. Upon completion of 22 h of IVM, 23, 23, 35 and 89% of oocytes from 0-, 6-, 12- and 22-h groups, respectively were detected at MII (P < 0.0001). In Experiment 3, cleavage and embryo development of oocytes vitrified at 0, 12 and 22 h of IVM were evaluated. The cleavage rate did not differ among vitrification groups (i.e. 14% at 0 h, 17% at 12 h and 14% at 22 h; P = 0.825). Cleavage and blastocyst rates were higher (P < 0.0001) in the non-vitrified (control) group than in vitrified groups (i.e. 73 vs 15% and 22 vs 0.3%, respectively). In conclusion, the maturation kinetics validated our in vitro culture system and vitrification adversely affected the ability of bovine oocytes to undergo in vitro maturation to the MII stage, in vitro fertilization and early embryo development. Vitrification of oocytes at GV, MI and MII stages of nuclear maturation did not differ in their subsequent survivability.
This study was supported by the Canadian Animal Genetic Resources Program, Agriculture and Agri-Food Canada.