Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

81 HIGH THROUGHPUT VITRIFICATION OF IN VIVO FERTILIZED AND IN VITRO CULTURED PORCINE EMBRYOS

C. N. Murphy A , L. D. Spate A , B. K. Bauer A and R. S. Prather A
+ Author Affiliations
- Author Affiliations

University of Missouri, Columbia, USA

Reproduction, Fertility and Development 23(1) 146-146 https://doi.org/10.1071/RDv23n1Ab81
Published: 7 December 2010

Abstract

One barrier to successfully making embryo transfer viable in the swine industry is an inability to consistently cryopreserve oocytes and embryos. This process is made difficult by the high lipid content of porcine oocytes and embryos. The objective of this study was to test the in vivo fertilized embryo’s sensitivity to vitrification. Gilts were inseminated on the first day of standing oestrus (Day 0) and then again 12 h later. On Day 2 the oviducts and tip of the uterine horns were flushed with PVA-treated TL-HEPES and 2-cell stage embryos were collected and placed into PVA-treated TL-HEPES and centrifuged at 17 000 × g. The treatment groups were 1) 300 mOsmo centrifuged for 6 min, 2) 500 mOsmo centrifuged for 6 min, 3) 500 mOsmo centrifuged for 12 min, and 4) 500 mOsmo centrifuged for 18 min. After centrifugation the embryos were transferred to Porcine Zygote Medium 3 (PZM3) and cultured to Day 6 or 7 at which point blastocysts were vitrified using 10% DMSO, 10% ethylene glycol in M199 supplemented with 20% FBS (holding medium) for 2 min. Embryos were transferred to holding media with 20% DMSO and 20% ethylene glycol and drawn into an open pulled straw via capillary reaction; it was then submerged into LN2. Embryos were thawed using a step down concentration of 0.33 mM and then 0.2 mM sucrose in holding media each for 6–7 min and then were moved to holding medium alone for 6 to 7 min. The embryos were washed in PZM3, then transferred to 500 μL of PZM3 and cultured for 18 h. Re-expanded embryos were observed, and the nuclei of all embryos were stained with Biz-benzimide and visualised with UV light to determine total cell number. After the embryos were centrifuged and cultured, there was no difference in development to blastocyst (SAS Institute, Cary, NC, USA; Proc GLM) with a mean percentage blastocyst of 85.1% and an N of 54, 51, 53, and 51, respectively, for each treatment. After thawing, percentage of embryos re-expanded was 23.5a, 26.4a,b, 43.2a,b, and 45.6b, respectively. Data was analysed using a PROC GLM in SAS (P < 0.05), with 37, 43, 30, and 36 embryos in each group, respectively. No difference in total cell number across treatments was detected after analysis using PROC GLM in SAS (P < 0.05) with a mean cell number of 29.0. These data suggest that in vivo matured and fertilized blastocysts can survive high osmolarity treatment, centrifugation, and vitrification. The data also show that a high osmolarity treatment centrifuged for 18 min leads to a greater number of re-expanded embryos post-thaw, which may be attributed to better separation of the lipid.

Funded by the NIH NCRR R21RR025879 and Food for the 21st Century.