Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

155 QUALITY OF PORCINE EMBRYO PRODUCED IN TWO EMBRYO CULTURE MEDIA AS ASSESSED BY TOTAL CELL NUMBER AND TIME COURSE OF BLASTOCYST HATCHING

Y. Agca, H. Men, S. F. Mullen, L. K. Riley, R. S. Prather and J. K. Critser

Reproduction, Fertility and Development 18(2) 185 - 185
Published: 14 December 2005

Abstract

The ability to produce porcine embryos of good quality will have a significant impact on a number of porcine assisted reproductive technologies, such as cloning, intracytoplasmic sperm injection, and embryo cryopreservation. However, porcine embryos resulting from current serum-free embryo culture systems differ significantly both structurally and functionally from those derived in vivo (Wang et al. 1999 Mol. Reprod. Dev. 53, 99-107). In this experiment, the quality of porcine embryos produced by North Carolina State University (NCSU)-23 medium (Petters and Wells 1993 J. Reprod. Fertil. Suppl. 1993, 48, 61-73) and porcine zygote medium (PZM)-1 (Yoshioka et al. 2002 Biol. Reprod. 66, 112-119) were compared by assessing the total cell number and the time course of in vitro blastocyst hatching. Porcine embryos were produced by in vitro maturation and fertilization using serum-free systems. After fertilization, presumptive zygotes were randomly allocated to either PZM-1 or NCSU-23 for subsequent development. On Day 4 of culture, the embryo culture media were supplemented with 10% fetal bovine serum (FBS). Day 6 blastocysts from each group were counted and the blastocysts were subsequently fixed in 4% formalin for counting the total cell number. The cell number in each embryo was determined by counting the nuclei after staining with bisbenzimide (Hoechst 33342). To assess the hatching ability of blastocysts, Day 6 blastocysts were cultured until Day 9 and hatched blastocysts were counted daily. Day 6 blastocyst rates (ratio of blastocysts to oocytes) and total cell number count were replicated three times. The time course of blastocyst hatching experiment was repeated four times. The data were analyzed using a chi-square test, Fisher's exact test, or Student's t-test. The blastocyst rate from culture in PZM-3 was 19.4 ± 0.96% (mean ± SEM), which was similar to that (16.7 ± 3.2%) resulting from culture in NCSU-23 (P > 0.05). However, the total cell number in Day 6 blastocysts cultured in PZM-3 was significantly higher than for blastocysts cultured in NCSU-23 (57 ± 3.1 vs. 46 ± 1.7; P < 0.01). The total hatching rates (ratio of hatched blastocysts to total blastocysts) by Day 9 were similar between the two culture systems (50.1 ± 9.1% vs. 50.7 ± 4.1%; P > 0.05). However, on Day 6, 2.1% of blastocysts from PZM-3 culture hatched whereas no blastocysts from NCSU-23 culture hatched. The cumulative hatching rates from PZM-3 culture on Day 7 were significantly higher than those from NCSU-23 culture (15.1 ± 3.8% vs. 2.6 ± 1.1%; P < 0.01). In conclusion, these data suggest that blastocysts produced in PZM-3 medium have better quality than blastocysts produced in the NCSU-23 culture system as assessed by the total cell number and the time course of blastocyst hatching.

This project was supported by a grant from the National Institutes of Health (U42 RR 018877).

https://doi.org/10.1071/RDv18n2Ab155

© CSIRO 2005

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email

View Dimensions