Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Fetal-fluid proteome analyses in late-term healthy pregnant mares and in mares with experimentally induced ascending placentitis

Igor F. Canisso https://orcid.org/0000-0003-3799-6641 A B * , Shavahn Loux A * , Kirsten E. Scoggin A , Edward L. Squires A , Mats H. Troedsson A and Barry A. Ball https://orcid.org/0000-0002-0502-0276 A C
+ Author Affiliations
- Author Affiliations

A Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY 40503, USA.

B Present address: Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, 1008 W Hazelwood Drive, Urbana, IL 61802, USA.

C Corresponding author. Email: b.a.ball@uky.edu

Reproduction, Fertility and Development 31(9) 1486-1496 https://doi.org/10.1071/RD18460
Submitted: 20 November 2018  Accepted: 19 March 2019   Published: 16 May 2019

Abstract

Characterisation of fetal fluids in healthy and disease states of pregnant mares can help to unravel the pathophysiology and to identify putative markers of disease. Thus, this study aimed to compare the protein composition of: (1) amniotic and allantoic fluids of healthy mares obtained immediately after euthanasia and (2) allantoic fluid harvested via centesis before and after experimental induction of placentitis via transcervical inoculation of Streptococcus equi ssp zooepidemicus in healthy mares. Fetal fluids were analysed with a high-throughput proteomic technique after in-gel digestion. Statistical comparisons were performed following normalisation of peptide spectral match. Global normalisation was performed to calculate relative expression. There were 112 unique proteins present in both allantoic and amniotic fluids. There were 13 and 29 proteins defined as amniotic- or allantoic-specific respectively that were present in at least two fluid samples. Another 26 proteins were present in both amniotic and allantoic fluids. Panther DB functional classification grouped fetal-fluid proteins as transfer carriers, signalling molecules, receptors, immunity, hydrolase, enzymes, membrane traffic, cytoskeleton, cell adhesion, calcium binding and extracellular matrix. Experimentally induced placentitis resulted in 10 proteins being upregulated and 10 downregulated in allantoic fluid. Newly identified proteins and changes in the fetal-fluid proteome provide clues about the physiology of pregnancy and pathogenesis of placentitis.

Additional keywords: horse, pregnancy disease, pregnancy physiology, protein ontology.


References

Ahsan, A., Salman, K. A., Alam, S., Siddiqui, A. H., Naeem, S. S., Ahmad, A., and Khan, I. M. (2014). Alpha-1-antitrypsin, a diagnostic and prognostic marker of vernal keratoconjunctivitis. J. Clin. Diagn. Res. 8, CC08–CC10.
Alpha-1-antitrypsin, a diagnostic and prognostic marker of vernal keratoconjunctivitis.Crossref | GoogleScholarGoogle Scholar | 24995171PubMed |

Annesley, T. M. (2003). Ion suppression in mass spectrometry. Clin. Chem. 49, 1041–1044.
Ion suppression in mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 12816898PubMed |

Bartnikas, T. B. (2012). Known and potential roles of transferrin in iron biology. Biometals 25, 677–686.
Known and potential roles of transferrin in iron biology.Crossref | GoogleScholarGoogle Scholar | 22294463PubMed |

Bartuski, A. J., Kamachi, Y., Shick, C., Overhauser, J., and Silverman, G. A. (1997). Cytoplasmic antiproteinsase 2 (PI18) and bomapin (PI10) map to the serpin cluster at 18q21.3. Genomics 43, 321–328.
Cytoplasmic antiproteinsase 2 (PI18) and bomapin (PI10) map to the serpin cluster at 18q21.3.Crossref | GoogleScholarGoogle Scholar | 9268635PubMed |

Botelho, D., Wall, M. J., Vieira, D. B., Fitzsimmons, S., Liu, F., and Doucetter, A. (2010). Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J. Proteome Res. 9, 2863–2879.
Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation.Crossref | GoogleScholarGoogle Scholar | 20377267PubMed |

Buhimschi, I. A., and Buhimschi, C. S. (2012). Proteomics diagnosis of chorioamnionitis and of relationship with the fetal exposure. Semin. Fetal Neonatal Med. 17, 36–45.
Proteomics diagnosis of chorioamnionitis and of relationship with the fetal exposure.Crossref | GoogleScholarGoogle Scholar | 22100864PubMed |

Buhimschi, C. S., Bhandari, V., Hamar, B. D., Bahtiyar, M. O., Zhao, G., Sfakianaki, A. K., Pettker, C. M., Magloire, L., Funai, E., Norwitz, E. R., Paidas, M., Copel, J. A., Weiner, C. P., Lockwood, C. J., and Buhimschi, I. A. (2007). Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis. PLoS Med. 4, e18.
Proteomic profiling of the amniotic fluid to detect inflammation, infection, and neonatal sepsis.Crossref | GoogleScholarGoogle Scholar | 17227133PubMed |

Buhimschi, I. A., Zhao, G., Rosenberg, V. A., Abdel-Razeq, S., Thung, S., and Buhimschi, C. S. (2008). Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth. PLoS One 3, e2049.
Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth.Crossref | GoogleScholarGoogle Scholar | 18431506PubMed |

Canisso, I. F., Ball, B. A., Cray, C., Williams, N. M., Scoggin, K. E., Davolli, G. M., Squires, E. L., and Troedsson, M. H. (2014a). Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration. Am. J. Reprod. Immunol. 72, 376–385.
Serum amyloid A and haptoglobin concentrations are increased in plasma of mares with ascending placentitis in the absence of changes in peripheral leukocyte counts or fibrinogen concentration.Crossref | GoogleScholarGoogle Scholar | 24916762PubMed |

Canisso, I. F., Ball, B. A., Squires, E. L., and Troedsson, M. H. (2014b). How to perform transabdominal ultrasound-guided fetal fluid sampling in mares. J. Equine Vet. Sci. 34, 1143–1147.
How to perform transabdominal ultrasound-guided fetal fluid sampling in mares.Crossref | GoogleScholarGoogle Scholar |

Canisso, I. F., Ball, B. A., Erol, E., Squires, E., and Troedsson, M. (2015a). Comprehensive review on equine placentitis. In ‘Proceedings of the 61st Annual Convention of the American Association of Equine Practitioners, Las Vegas, Nevada, USA’. pp. 490–509.

Canisso, I. F., Ball, B. A., Cray, C., Squires, E. L., and Troedsson, M. H. (2015b). Use of qualitative horse-side test to measure serum amyloid in mares with experimentally induced ascending placentitis. J. Equine Vet. Sci. 35, 54–59.
Use of qualitative horse-side test to measure serum amyloid in mares with experimentally induced ascending placentitis.Crossref | GoogleScholarGoogle Scholar |

Canisso, I. F., Ball, B. A., Scoggin, K. E., Squires, E. L., Williams, N. M., and Troedsson, M. H. (2015c). Alpha-fetoprotein is present in the fetal fluids and is increased in plasma of mares with experimentally induced ascending placentitis. Anim. Reprod. Sci. 154, 48–55.
Alpha-fetoprotein is present in the fetal fluids and is increased in plasma of mares with experimentally induced ascending placentitis.Crossref | GoogleScholarGoogle Scholar | 25599591PubMed |

Canisso, I. F., Ball, B. A., Esteller-Vico, A., Squires, E., and Troedsson, M. H. (2017). Changes in maternal androgens and oestrogens in mares with experimentally induced ascending placentitis. Equine Vet J. 49, 244–249.
Changes in maternal androgens and oestrogens in mares with experimentally induced ascending placentitis.Crossref | GoogleScholarGoogle Scholar | 26729310PubMed |

Choksawangkarn, W., Edwards, N., Wang, Y., Gutierrez, P., and Fenselau, C. (2012). A comparative study of workflows optimized for in-gel, in-solution and on-filter proteolysis in the analysis of plasma membrane proteins. J. Proteome Res. 11, 3030–3034.
A comparative study of workflows optimized for in-gel, in-solution and on-filter proteolysis in the analysis of plasma membrane proteins.Crossref | GoogleScholarGoogle Scholar | 22500775PubMed |

Erol, E., Jackson, C., Horohov, D., Locke, S., Smith, J., and Carter, C. (2016). Elevated serum amyloid A levels in cases of aborted equine fetuses due to fetal and placental infections. Theriogenology 86, 971–975.
Elevated serum amyloid A levels in cases of aborted equine fetuses due to fetal and placental infections.Crossref | GoogleScholarGoogle Scholar | 27125694PubMed |

Feist, P., and Hummon, A. B. (2015). Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. Int. J. Mol. Sci. 16, 3537–3563.
Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples.Crossref | GoogleScholarGoogle Scholar | 25664860PubMed |

Finger, I. S., Dos Santos, R. S., Pazinato, F. M., De Vita, B., Prester, N. C., Nogueira, C. E. W., and Curcio, B. R. (2014). Evaluation of biochemical composition on amniotic fluid in mares with placentitis. J. Equine Vet. Sci. 34, 240.
Evaluation of biochemical composition on amniotic fluid in mares with placentitis.Crossref | GoogleScholarGoogle Scholar |

Galera, P. D., Ribeiro, C. R., Sapp, H. L., Coleman, J., Fontes, W., and Brooks, D. E. (2015). Proteomic analysis of equine amniotic membrane characterization of proteins. Vet. Ophthalmol. 18, 198–209.
Proteomic analysis of equine amniotic membrane characterization of proteins.Crossref | GoogleScholarGoogle Scholar | 24981051PubMed |

Gela, A., Bhongir, R. K., Mori, M., Keenan, P., Morgelin, M., Erjefalt, J. S., Herwald, H., Egesten, A., and Kasetty, G. (2016a). Osteopontin that is elevated in the airways during COPD impairs the antibacterial activity of common innate antibiotics. Plos One 5, e0146192.
Osteopontin that is elevated in the airways during COPD impairs the antibacterial activity of common innate antibiotics.Crossref | GoogleScholarGoogle Scholar |

Gela, A., Kasetty, G., Morgelin, M., Bergqvist, A., Erjefalt, J. S., Pease, J. E., and Egesten, A. (2016b). Oesteopontin binds and modulates functions of eosinophil-recruiting chemokines. Allergy 71, 58–67.
Oesteopontin binds and modulates functions of eosinophil-recruiting chemokines.Crossref | GoogleScholarGoogle Scholar | 26411293PubMed |

Giles, R. C., Donahue, J. M., Hong, C. B., Tuttle, P. A., Petrites-Murphy, M. B., Poonacha, K. B., Roberts, A. W., Tramontin, R. R., Smith, B., and Swerczek, T. W. (1993). Causes of abortion, stillbirth, and perinatal death in horses: 3,527 cases (1986–1991). J. Am. Vet. Med. Assoc. 203, 1170–1175.
| 8244867PubMed |

Holdstock, N. B., McGladdery, A. J., Ousey, J., and Rossdale, P. D. (1995). Assessing methods of collection and changes of selected biochemical constituents in amniotic and allantoic fluid throughout equine pregnancy. Biol. Reprod. Monograph 52, 21–38.
Assessing methods of collection and changes of selected biochemical constituents in amniotic and allantoic fluid throughout equine pregnancy.Crossref | GoogleScholarGoogle Scholar |

Honest, H., Bachmann, L. M., Gupta, J. K., Kleijnen, J., and Khan, K. S. (2002). Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ 325, 301.
Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review.Crossref | GoogleScholarGoogle Scholar | 12169504PubMed |

Hong, C. B., Donahue, J. M., Giles, R. C., Petrites-Murphy, M. B., Poonachar, K. B., Roberts, A. W., Smith, B. J., Tramontin, R. R., Tuttle, P. A., and Swerczek, T. W. (1993). Etiology and pathology of equine placentitis. J. Vet. Diagn. Invest 5, 56–63.
Etiology and pathology of equine placentitis.Crossref | GoogleScholarGoogle Scholar | 8466982PubMed |

Huaiyu, M., Huang, Z., Muruganujan, A., Tang, H., Mills, C., Kang, D., and Thomas, P. D. (2017). Panther Version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189.
Panther Version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements.Crossref | GoogleScholarGoogle Scholar |

Isani, G., Ferlizza, E., Cuoghi, A., Bellei, E., Monari, E., Butina, B. B., and Castagnetti, C. (2016). Identification of the most abundant proteins in equine amniotic fluid by a proteomic approach. Anim. Reprod. Sci. 174, 150–160.
Identification of the most abundant proteins in equine amniotic fluid by a proteomic approach.Crossref | GoogleScholarGoogle Scholar | 27769536PubMed |

Klein, J., Buffin-Meyer, B., Mullen, W., Carty, D. M., Delles, C., Vlahou, A., Mischack, H., Decramer, S., Bascands, J. L., and Schanstra, J. P. (2014). Clinical proteomics in obstetrics and neonatology. Expert Rev. Proteomics 11, 75–89.
Clinical proteomics in obstetrics and neonatology.Crossref | GoogleScholarGoogle Scholar | 24404900PubMed |

Kodama, Y., Ishikawa, T., Shimoyama, Y., Sasaki, D., Kimura, S., and Sasaki, M. (2018). The fibronectin-binding protein homologue Fbp62 of Streptococcus anginosus is a potent virulence factor. Microbiol. Immunol. 62, 624–634.
The fibronectin-binding protein homologue Fbp62 of Streptococcus anginosus is a potent virulence factor.Crossref | GoogleScholarGoogle Scholar | 30192020PubMed |

Kolarich, D. D., Weber, A., Turecek, P. L., Schwarz, H. P., and Altmann, F. (2006). Comprehensive glycol-proteomic analysis of human alpha-antitrypsin and its charge isoforms. Proteomics 6, 3369–3380.
Comprehensive glycol-proteomic analysis of human alpha-antitrypsin and its charge isoforms.Crossref | GoogleScholarGoogle Scholar |

Kolm, G., Klein, D., Knapp, E., Watanabe, K., and Walker, I. (2006). Lactoferrin expression in the horse endometrium: relevance in persistent mating-induced endometritis. Vet. Immunol. Immunopathol. 114, 159–167.
Lactoferrin expression in the horse endometrium: relevance in persistent mating-induced endometritis.Crossref | GoogleScholarGoogle Scholar | 16973221PubMed |

Laugier, C., Foucher, N., Sevin, C., Leon, A., and Tapprest, J. (2011). A 24-year retrospective study of equine abortion in Normandy (France). J. Equine Vet. Sci. 31, 116–123.
A 24-year retrospective study of equine abortion in Normandy (France).Crossref | GoogleScholarGoogle Scholar |

Loux, S. C., and Ball, B. A. (2018). The proteome of fetal fluids in mares with experimentally-induced placentitis. Placenta 64, 71–78.
The proteome of fetal fluids in mares with experimentally-induced placentitis.Crossref | GoogleScholarGoogle Scholar | 29626984PubMed |

Loux, S. C., Scoggin, K. E., Troedsson, M. H., Squires, E. L., and Ball, B. A. (2017). Characterization of the cervical mucus plug in mares. Reproduction 153, 197–210.
Characterization of the cervical mucus plug in mares.Crossref | GoogleScholarGoogle Scholar | 27845690PubMed |

Paccamonti, D. L., Swiderski, C. E., Marx, B., Gaunt, S., and Blouin, D. (1995). Electrolytes and biochemical enzymes in amniotic and allantoic fluid of the equine fetus during late gestation. Biol Reprod Monograph Series 52, 39–48.
Electrolytes and biochemical enzymes in amniotic and allantoic fluid of the equine fetus during late gestation.Crossref | GoogleScholarGoogle Scholar |

Paulo, J. A. (2016). Sample preparation for proteomic analysis using a GeLC-MS/MS strategy. J. Biol. Methods 3, e45.
Sample preparation for proteomic analysis using a GeLC-MS/MS strategy.Crossref | GoogleScholarGoogle Scholar | 27482532PubMed |

Schirle, M., Heurtier, M. A., and Kuster, B. (2003). Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics 2, 1297–1305.
Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 14532353PubMed |

Tambor, V., Kacerovsky, M., Andrys, C., Musilova, I., Hornychova, H., Pliskova, L., Link, M., Stulik, J., and Lenco, J. (2012). Amniotic fluid cathelicidin in PROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis. PLoS One 7, e41164.
Amniotic fluid cathelicidin in PROM pregnancies: from proteomic discovery to assessing its potential in inflammatory complications diagnosis.Crossref | GoogleScholarGoogle Scholar | 22815956PubMed |

Tambor, V., Kacerovsky, M., Lenco, J., Bhat, G., and Menon, R. (2013). Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in Pprom. Placenta 34, 155–161.
Proteomics and bioinformatics analysis reveal underlying pathways of infection associated histologic chorioamnionitis in Pprom.Crossref | GoogleScholarGoogle Scholar | 23246098PubMed |

Van der Windt, G. J., Hoogendijk, A. J., Schouten, M., Hommes, T. J., de Vos, A. F., Florquin, S., and Van der Poll, T. (2011). Osteopontin impairs host defense during pneumococcal pneumonia. J. Infect. Dis. 203, 1850–1858.
Osteopontin impairs host defense during pneumococcal pneumonia.Crossref | GoogleScholarGoogle Scholar | 21606543PubMed |

Williams, M. A., Wallace, S. S., Tyler, J. W., McCall, C. A., Gutierrez, A., and Spano, J. S. (1993). Biochemical characteristics of amniotic and allantoic fluid in late gestational mares. Theriogenology 40, 1251–1257.
Biochemical characteristics of amniotic and allantoic fluid in late gestational mares.Crossref | GoogleScholarGoogle Scholar |

Wood, P. L., Ball, B. A., Scoggin, K., Troedsson, M. H., and Squires, E. L. (2018). Lipidomics of equine amniotic fluid: identification of amphiphilic (O-acyl)-ω-hydroxyl-fatty acids. Theriogenology 105, 120–125.
Lipidomics of equine amniotic fluid: identification of amphiphilic (O-acyl)-ω-hydroxyl-fatty acids.Crossref | GoogleScholarGoogle Scholar | 28950169PubMed |

Wooding, F. B., Morgan, G., Fowden, A. L., and Allen, W. R. (2000). Separate sites and mechanisms for placental transport of calcium, iron, and glucose in the equine placenta. Placenta 21, 635–645.
Separate sites and mechanisms for placental transport of calcium, iron, and glucose in the equine placenta.Crossref | GoogleScholarGoogle Scholar | 10985966PubMed |

Yi, L., Wang, Y., Ma, Z., Zhang, H., Li, Y., Zheng, J. X., Yang, Y. C., Lu, C. P., and Fan, H. J. (2013). Contribution of fibronectin-binding protein to the pathogenesis of Streptococcus equi ssp. zooepidemicus. Pathog. Dis. 67, 174–183.
Contribution of fibronectin-binding protein to the pathogenesis of Streptococcus equi ssp. zooepidemicus.Crossref | GoogleScholarGoogle Scholar | 23620180PubMed |

Yu, Y., Smith, M., and Pieper, R. A. (2014). Spinnable and automable stagetip for high throughput peptide desalting and proteomics. Protoc. Exch , .
Spinnable and automable stagetip for high throughput peptide desalting and proteomics.Crossref | GoogleScholarGoogle Scholar |

Zanella, L. F. (2008). Biochemical analyses of the amniotic and allantoic fluids throughout gestation in Equus caballus. Dissertation thesis, São Paulo State University, Botucatu, São Paulo, Brazil.

Zanella, L. F., Takahira, R. K., Melo-Ona, C. M., Ona-Magalhaes, L. C., and Prestes, N. C. (2014). Biochemical profile of amniotic and allantoic fluid during different gestational phases in mares. J. Equine Vet. Sci. 34, 403–406.
Biochemical profile of amniotic and allantoic fluid during different gestational phases in mares.Crossref | GoogleScholarGoogle Scholar |

Zubarev, R. A., and Makarov, A. (2013). Orbitrap mass spectrometry. Anal. Chem. 85, 5288–5296.
Orbitrap mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 23590404PubMed |