Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Raman spectroscopic analysis of testicular lamina propria predicts spermatogenesis in a mouse infertility model

Yufei Liu A , Xiaobo Wu A and Haowen Jiang https://orcid.org/0000-0003-0214-2590 A B
+ Author Affiliations
- Author Affiliations

A Department of Urology, Fudan Institute of Urology, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Shanghai 200040, China.

B Corresponding author. Email: urology_jhw@126.com

Reproduction, Fertility and Development 31(5) 915-919 https://doi.org/10.1071/RD18360
Submitted: 4 September 2018  Accepted: 14 December 2018   Published: 10 January 2019

Abstract

The status of the testicular lamina propria (LP) is associated with spermatogenesis. The aim of this study was to determine whether Raman spectroscopy (RS) could detect material components within the LP and predict spermatogenesis. Twenty adult male mice were divided into a busulfan-treated group (n = 16 mice receiving a single injection of 50 mg kg−1, i.p., busulfan) and a control group (n = 4 mice receiving an equivalent volume of 0.9% saline solution injected i.p.). Mice were killed 2, 4, 6 and 8 weeks after injection of busulfan or saline solution (n = 1 control and 4 busulfan-treated mice at each time point). The testicular tubules were assessed by RS and compared with histopathological observations. Control tubules had raw spectral intensities below 2000 arbitrary units, whereas busulfan tubules had strengthened intensities that peaked at Week 4 (absent spermatogenesis) and returned to normal levels at Week 8 (restored spermatogenesis). The change in the LP revealed by RS occurred before the change in spermatogenesis detected by histopathology. Correspondingly, the sensitivity/specificity of RS for distinguishing busulfan-treated and control tubules at 2, 4, 6 and 8 weeks were 65.00%/70.00%, 95.00%/100.00%, 40.00%/100.00% and 25.00%/95.00% respectively. Collectively, RS could be used to evaluate the status of the LP and as a complement to histopathological evaluation to predict tubules with the potential to develop spermatogenesis for infertile patients.

Additional keyword: busulfan.


References

Bustos-Obregon, E. (1976). Ultrastructure and function of the lamina propria of mammalian seminiferous tubules. Andrologia 8, 179–185.
Ultrastructure and function of the lamina propria of mammalian seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 826188PubMed |

Chan, J. W., Taylor, D. S., Zwerdling, T., Lane, S. M., Ihara, K., and Huser, T. (2006). Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells. Biophys. J. 90, 648–656.
Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells.Crossref | GoogleScholarGoogle Scholar | 16239327PubMed |

Chen, L. Y., Brown, P. R., Willis, W. B., and Eddy, E. M. (2014). Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance. Endocrinology 155, 4964–4974.
Peritubular myoid cells participate in male mouse spermatogonial stem cell maintenance.Crossref | GoogleScholarGoogle Scholar | 25181385PubMed |

Christl, H. W. (1990). The lamina propria of vertebrate seminiferous tubules: a comparative light and electron microscopic investigation. Andrologia 22, 85–94.
The lamina propria of vertebrate seminiferous tubules: a comparative light and electron microscopic investigation.Crossref | GoogleScholarGoogle Scholar | 2281881PubMed |

Dohle, G. R., Elzanaty, S., and van Casteren, N. J. (2012). Testicular biopsy: clinical practice and interpretation. Asian J. Androl. 14, 88–93.
Testicular biopsy: clinical practice and interpretation.Crossref | GoogleScholarGoogle Scholar | 22157985PubMed |

Esmonde-White, K. A., Cuellar, M., Uerpmann, C., Lenain, B., and Lewis, I. R. (2017). Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal. Bioanal. Chem. 409, 637–649.
Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing.Crossref | GoogleScholarGoogle Scholar | 27491299PubMed |

Ghalayini, I. F., Al-Ghazo, M. A., Hani, O. B., Al-Azab, R., Bani-Hani, I., Zayed, F., and Haddad, Y. (2011). Clinical comparison of conventiaonl testicular sperm extraction and microdissection techniques for non-obstructive azoospermia. J. Clin. Med. Res. 3, 124–131.
| 21811543PubMed |

Gülkesen, K. H., Erdogru, T., Sargin, C. F., and Karpuzoglu, G. (2002). Expression of extracellular matrix proteins and vimentin in testes of azoospermic man: an immunohistochemical and morphometric study. Asian J. Androl. 4, 55–60.
| 11907629PubMed |

Horsnell, J. D., Kendall, C., and Stone, N. (2016). Towards the intra-operative use of Raman spectroscopy in breast cancer-overcoming the effects of theatre lighting. Lasers Med. Sci. 31, 1143–1149.
Towards the intra-operative use of Raman spectroscopy in breast cancer-overcoming the effects of theatre lighting.Crossref | GoogleScholarGoogle Scholar | 27220528PubMed |

Jasinski, R. W., Amendola, M. A., Glazer, G. M., Bree, R. L., and Gikas, P. W. (1985). Computed tomography of renal oncocytomas. Comput. Radiol. 9, 307–314.
Computed tomography of renal oncocytomas.Crossref | GoogleScholarGoogle Scholar | 4064635PubMed |

Kourkoumelis, N., Balatsoukas, I., Moulia, V., Elka, A., Gaitanis, G., and Bassukas, I. D. (2015). Advances in the in vivo Raman spectroscopy of malignant skin tumors using portable instrumentation. Int. J. Mol. Sci. 16, 14554–14570.
Advances in the in vivo Raman spectroscopy of malignant skin tumors using portable instrumentation.Crossref | GoogleScholarGoogle Scholar | 26132563PubMed |

Kunapareddy, N., Freyer, J. P., and Mourant, J. R. (2008). Raman spectroscopic characterization of necrotic cell death. J. Biomed. Opt. 13, 054002.
Raman spectroscopic characterization of necrotic cell death.Crossref | GoogleScholarGoogle Scholar | 19021382PubMed |

Liu, Y., Zhu, Y., Di, L., Osterberg, E. C., Liu, F., He, L., Hu, H., Huang, Y., Li, P. S., and Li, Z. (2014). Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules. Fertil. Steril. 102, 54–60.e2.
Raman spectroscopy as an ex vivo noninvasive approach to distinguish complete and incomplete spermatogenesis within human seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 24767690PubMed |

Liu, Y. F., Di, L., Osterberg, E. C., He, L., Li, P. S., and Li, Z. (2016). Use of Raman spectroscopy to identify active spermatogenesis and Sertoli-cell-only tubules in mice. Andrologia 48, 1086–1091.
Use of Raman spectroscopy to identify active spermatogenesis and Sertoli-cell-only tubules in mice.Crossref | GoogleScholarGoogle Scholar | 26804545PubMed |

Luetjens, C. M., Gromoll, J., Engelhardt, M., Von Eckardstein, S., Bergmann, M., Nieschlag, E., and Simoni, M. (2002). Manifestation of Y-chromosomal deletions in the human testis: a morphometrical and immunohistochemical evaluation. Hum. Reprod. 17, 2258–2266.
Manifestation of Y-chromosomal deletions in the human testis: a morphometrical and immunohistochemical evaluation.Crossref | GoogleScholarGoogle Scholar | 12202411PubMed |

Miernik, A., Eilers, Y., Bolwien, C., Lambrecht, A., Hauschke, D., Rebentisch, G., Lossin, P. S., Hesse, A., Rassweiler, J. J., Wetterauer, U., and Schoenthaler, M. (2013). Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application. J. Urol. 190, 1895–1900.
Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application.Crossref | GoogleScholarGoogle Scholar | 23770149PubMed |

Mirhoseini, M., Saki, G., Hemadi, M., Khodadadi, A., and Mohammadi Asl, J. (2014). Melatonin and testicular damage in busulfan treated mice. Iran. Red Crescent Med. J. 16, e14463.
Melatonin and testicular damage in busulfan treated mice.Crossref | GoogleScholarGoogle Scholar | 24719743PubMed |

Okada, H., Dobashi, M., Yamazaki, T., Hara, I., Fujisawa, M., Arakawa, S., and Kamidono, S. (2002). Conventional versus microdissection testicular sperm extraction for nonobstructive azoospermia. J. Urol. 168, 1063–1067.
Conventional versus microdissection testicular sperm extraction for nonobstructive azoospermia.Crossref | GoogleScholarGoogle Scholar | 12187223PubMed |

Osterberg, E. C., Laudano, M. A., Ramasamy, R., Sterling, J., Robinson, B. D., Goldstein, M., Li, P. S., Haka, A. S., and Schlegel, P. N. (2014). Identification of spermatogenesis in a rat Sertoli-cell only model using Raman spectroscopy: a feasibility study. J. Urol. 192, 607–612.
Identification of spermatogenesis in a rat Sertoli-cell only model using Raman spectroscopy: a feasibility study.Crossref | GoogleScholarGoogle Scholar | 24518766PubMed |

Pence, I., and Mahadevan-Jansen, A. (2016). Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 45, 1958–1979.
Clinical instrumentation and applications of Raman spectroscopy.Crossref | GoogleScholarGoogle Scholar | 26999370PubMed |

Qin, Y., Liu, L., He, Y., Wang, C., Liang, M., Chen, X., Hao, H., Qin, T., Zhao, X., and Wang, D. (2016). Testicular busulfan injection in mice to prepare recipients for spermatogonial stem cell transplantation is safe and non-toxic. PLoS One 11, e0148388.
Testicular busulfan injection in mice to prepare recipients for spermatogonial stem cell transplantation is safe and non-toxic.Crossref | GoogleScholarGoogle Scholar | 27880823PubMed |

Sato, Y., Nozawa, S., and Iwamoto, T. (2008). Study of spermatogenesis and thickening of lamina propria in the human seminiferous tubules. Fertil. Steril. 90, 1310–1312.
Study of spermatogenesis and thickening of lamina propria in the human seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 18304550PubMed |

Zhang, C., Zhang, D., and Cheng, J. X. (2015). Coherent Raman scattering microscopy in biology and medicine. Annu. Rev. Biomed. Eng. 17, 415–445.
Coherent Raman scattering microscopy in biology and medicine.Crossref | GoogleScholarGoogle Scholar | 26514285PubMed |