Maternal exposure to fluoxetine during gestation and lactation does not alter plasma concentrations of testosterone, oestrogen or corticosterone in peripubertal offspring
Matheus A. Barbosa A , Luiz F. Veríssimo A , Daniela C. C. Gerardin A , Gislaine G. Pelosi A , Graziela S. Ceravolo A and Estefania G. Moreira A BA Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, PR-445, Km 380, PR, Brazil.
B Corresponding author. Email: egmoreira@uel.br
Reproduction, Fertility and Development 31(5) 1002-1008 https://doi.org/10.1071/RD18279
Submitted: 19 July 2018 Accepted: 2 January 2019 Published: 21 February 2019
Abstract
Antidepressants are widely used around the world, primarily for the treatment of mood disorders, anxiety and pain syndromes. Women who use antidepressants often continue to use them during pregnancy. Selective serotonin reuptake inhibitors, including fluoxetine, are the main class of antidepressants prescribed to pregnant women. It is known that fluoxetine crosses the placental–blood barrier and is excreted in breast milk. Consequently, indirect exposure of the infant occurs. Knowing that fluoxetine alters the balance of neurotransmitters in the central nervous system, several studies have shown that maternal exposure to this drug leads to various adverse effects on the nervous, reproductive and cardiovascular systems of the offspring. The aim of the present study was to evaluate the effects of exposure to fluoxetine during gestation and lactation on parameters related to steroid hormones in prepubertal and pubertal male and female rats. The endpoints evaluated were date of puberty onset, plasma testosterone and oestrogen concentrations before and after puberty onset and corticosterone concentration before and after adrenocorticotrophin stimulus. None of the parameters was affected by fluoxetine exposure.
Additional keyword: steroidogenesis.
References
Åmellem, I., Suresh, S., Chang, C. C., Tok, S. S. L., and Tashiro, A. (2017). A critical period for antidepressant-induced acceleration of neuronal maturation in adult dentate gyrus. Transl. Psychiatry 7, e1235.| A critical period for antidepressant-induced acceleration of neuronal maturation in adult dentate gyrus.Crossref | GoogleScholarGoogle Scholar | 28925998PubMed |
Andrews, M. H., and Matthews, S. G. (2004). Programming of the hypothalamo–pituitary–adrenal axis: serotonergic involvement. Stress 7, 15–27.
| Programming of the hypothalamo–pituitary–adrenal axis: serotonergic involvement.Crossref | GoogleScholarGoogle Scholar | 15204029PubMed |
Arias, P., Szwarcfarb, B., de Rondina, D. C., Carbone, S., Sverdlik, R., and Moguilevsky, J. A. (1990). In vivo and in vitro studies on the effect of the serotoninergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats. Brain Res. 523, 57–61.
| In vivo and in vitro studies on the effect of the serotoninergic system on luteinizing hormone and luteinizing hormone-releasing hormone secretion in prepubertal and peripubertal female rats.Crossref | GoogleScholarGoogle Scholar | 2207690PubMed |
Bacchi, A. D. (2016). Efeito da exposição à fluoxetina durante a gestação e amamentação sobre o eixo corticotrófico e vias dopaminérgicas em ratos. Ph.D. Thesis, Universidade Estadual de Londrina, Londrina, Brazil.
Brindley, R. L., Bauer, M. B., Blakely, R. D., and Currie, K. P. M. (2017). Serotonin and serotonin transporters in the adrenal medulla: a potential hub for modulation of the sympathetic stress response. ACS Chem. Neurosci. 8, 943–954.
| Serotonin and serotonin transporters in the adrenal medulla: a potential hub for modulation of the sympathetic stress response.Crossref | GoogleScholarGoogle Scholar | 28406285PubMed |
Collin, O., Damber, J. E., and Bergh, A. (1996). Testicular blood flow and testosterone concentrations in the spermatic venous blood in rats with experimental cryptorchidism. J. Reprod. Fertil. 106, 17–22.
| Testicular blood flow and testosterone concentrations in the spermatic venous blood in rats with experimental cryptorchidism.Crossref | GoogleScholarGoogle Scholar | 8667341PubMed |
De Ceballos, M. L., Benedi, A., Urdin, C., and Del Rio, J. (1985). Prenatal exposure of rats to antidepressant drugs down-regulates beta-adrenoceptors and 5–HT2 receptors in cerebral cortex. Neuropharmacology 24, 947–952.
| Prenatal exposure of rats to antidepressant drugs down-regulates beta-adrenoceptors and 5–HT2 receptors in cerebral cortex.Crossref | GoogleScholarGoogle Scholar | 2999633PubMed |
De Souza, E. B. (1986). Serotonin and dopamine receptors in the rat pituitary gland: autoradiographic identification, characterization, and localization. Endocrinology 119, 1534–1542.
| Serotonin and dopamine receptors in the rat pituitary gland: autoradiographic identification, characterization, and localization.Crossref | GoogleScholarGoogle Scholar | 2944737PubMed |
Dijkstra, I., Binnekade, R., and Tilders, F. J. H. (1996). Diurnal variation in resting levels of corticosterone is not mediated by variation in adrenal responsiveness to adrenocorticotropin but involves splanchnic nerve integrity. Endocrinology 137, 540–547.
| Diurnal variation in resting levels of corticosterone is not mediated by variation in adrenal responsiveness to adrenocorticotropin but involves splanchnic nerve integrity.Crossref | GoogleScholarGoogle Scholar | 8593800PubMed |
dos Santos, A. H., Vieira, M. L., de Azevedo Camin, N., Anselmo-Franci, J. A., Ceravolo, G. S., Pelosi, G. G., Moreira, E. G., Kiss, A. C. I., Mesquita, Sde F., and Gerardin, D. C. (2016). In utero and lactational exposure to fluoxetine delays puberty onset in female rats offspring. Reprod. Toxicol. 62, 1–8.
| In utero and lactational exposure to fluoxetine delays puberty onset in female rats offspring.Crossref | GoogleScholarGoogle Scholar | 27094375PubMed |
Favaro, P. d., Costa, L. C., and Moreira, E. G. (2008). Maternal fluoxetine treatment decreases behavioral response to dopaminergic drugs in female pups. Neurotoxicol. Teratol. 30, 487–494.
| Maternal fluoxetine treatment decreases behavioral response to dopaminergic drugs in female pups.Crossref | GoogleScholarGoogle Scholar | 18586456PubMed |
Francis-Oliveira, J. (2013). Avaliação neurofuncional de ratos expostos à fluoxetina durante a gestação e lactação. Ph.D. Thesis, Universidade Estadual de Londrina, Londrina, Brazil.
Francis-Oliveira, J., Ponte, B., Barbosa, A. P. M., Veríssimo, L. F., Gomes, M. V., Pelosi, G. G., de Britto, L. R. G., and Moreira, E. G. (2013). Fluoxetine exposure during pregnancy and lactation: effects on acute stress response and behavior in the novelty-suppressed feeding are age and gender-dependent in rats. Behav. Brain Res. 252, 195–203.
| Fluoxetine exposure during pregnancy and lactation: effects on acute stress response and behavior in the novelty-suppressed feeding are age and gender-dependent in rats.Crossref | GoogleScholarGoogle Scholar | 23764459PubMed |
Gentile, S., and Galbally, M. (2011). Prenatal exposure to antidepressant medications and neurodevelopmental outcomes: a systematic review. J. Affect. Disord. 128, 1–9.
| Prenatal exposure to antidepressant medications and neurodevelopmental outcomes: a systematic review.Crossref | GoogleScholarGoogle Scholar | 20303599PubMed |
González, C. R., González, B., Matzkin, M. E., Muñiz, J. A., Cadet, J. L., Garcia-Rill, E., Urbano, F. J., Vitullo, A. D., and Bisagno, V. (2015). Psychostimulant-induced testicular toxicity in mice: evidence of cocaine and caffeine effects on the local dopaminergic system. PLoS One 10, e0142713.
| Psychostimulant-induced testicular toxicity in mice: evidence of cocaine and caffeine effects on the local dopaminergic system.Crossref | GoogleScholarGoogle Scholar | 26560700PubMed |
Gouvêa, T. S., Morimoto, H. K., de Faria, M. J. S. S., Moreira, E. G., and Gerardin, D. C. C. (2008). Maternal exposure to the antidepressant fluoxetine impairs sexual motivation in adult male mice. Pharmacol. Biochem. Behav. 90, 416–419.
| Maternal exposure to the antidepressant fluoxetine impairs sexual motivation in adult male mice.Crossref | GoogleScholarGoogle Scholar | 18457868PubMed |
Hay, D. W. P., and Wadsworth, R. M. (1982). The contractile effects of 5-hydroxytryptamine on the rat isolated vas deferens. Br. J. Pharmacol. 77, 605–613.
| The contractile effects of 5-hydroxytryptamine on the rat isolated vas deferens.Crossref | GoogleScholarGoogle Scholar |
Heikkinen, T., Ekblad, U., Palo, P., and Laine, K. (2003). Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation. Clin. Pharmacol. Ther. 73, 330–337.
| Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar | 12709723PubMed |
Hendrick, V., Stowe, Z. N., Altshuler, L. L., Hwang, S., Lee, E., and Haynes, D. (2003). Placental passage of antidepressant medications. Am. J. Psychiatry 160, 993–996.
| Placental passage of antidepressant medications.Crossref | GoogleScholarGoogle Scholar | 12727706PubMed |
Henriksen, R., Dizeyi, N., and Abrahamsson, P. A. (2012). Expression of serotonin receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in ovary and in ovarian tumours. Anticancer Res. 32, 1361–1366.
| 22493371PubMed |
Higashi, C. M., Matsumoto, A. K., Gameiro, J. G., Moura, K. F., Higachi, L., Oliveira, L. C., Barbosa, D. S., Moreira, E. G., and Ceravolo, G. S. (2016). Does fish oil or folic acid prevent vascular changes in female progeny caused by maternal exposure to fluoxetine? Life Sci. 152, 165–170.
| Does fish oil or folic acid prevent vascular changes in female progeny caused by maternal exposure to fluoxetine?Crossref | GoogleScholarGoogle Scholar | 27021785PubMed |
Huybrechts, K. F., Palmsten, K., Mogun, H., Kowal, M., Avorn, J., Setoguchi-Iwata, S., and Hernández-Díaz, S. (2013). National trends in antidepressant medication treatment among publicly insured pregnant women. Gen. Hosp. Psychiatry 35, 265–271.
| National trends in antidepressant medication treatment among publicly insured pregnant women.Crossref | GoogleScholarGoogle Scholar | 23374897PubMed |
Jaber, M., Robinson, S. W., Missale, C., and Caron, M. G. (1996). Dopamine receptors and brain function. Neuropharmacology 35, 1503–1519.
| Dopamine receptors and brain function.Crossref | GoogleScholarGoogle Scholar | 9025098PubMed |
Jason, K. M., Cooper, T. B., and Friedman, E. (1981). Prenatal exposure to imipramine alters early behavioral development and beta adrenergic receptors in rats. J. Pharmacol. Exp. Ther. 217, 461–466.
| 6262486PubMed |
Jensen, H. M., Gron, R., Lidegaard, O., Pedersen, L. H., Andersen, P. K., and Kessing, L. V. (2013a). Maternal depression, antidepressant use in pregnancy and Apgar scores in infants. Br. J. Psychiatry 202, 347–351.
| Maternal depression, antidepressant use in pregnancy and Apgar scores in infants.Crossref | GoogleScholarGoogle Scholar | 23429204PubMed |
Jensen, H. M., Gron, R., Lidegaard, Ø., Pedersen, L. H., Andersen, P. K., and Kessing, L. V. (2013b). The effects of maternal depression and use of antidepressants during pregnancy on risk of a child small for gestational age. Psychopharmacology (Berl.) 228, 199–205.
| The effects of maternal depression and use of antidepressants during pregnancy on risk of a child small for gestational age.Crossref | GoogleScholarGoogle Scholar | 23455598PubMed |
Jimenez-Solem, E., Andersen, J. T., Petersen, M., Broedbaek, K., Andersen, N. L., Torp-Pedersen, C., and Poulsen, H. E. (2013). Prevalence of antidepressant use during pregnancy in Denmark, a nation-wide cohort study. PLoS One 8, e63034.
| Prevalence of antidepressant use during pregnancy in Denmark, a nation-wide cohort study.Crossref | GoogleScholarGoogle Scholar | 23638179PubMed |
Knaepen, L., Rayen, I., Charlier, T. D., Fillet, M., Houbart, V., van Kleef, M., Steinbusch, H. W., Patijn, J., Tibboel, D., Joosten, E. A., and Pawluski, J. L. (2013). Developmental fluoxetine exposure normalizes the long-term effects of maternal stress on post-operative pain in Sprague-Dawley rat offspring. PLoS One 8, e57608.
| Developmental fluoxetine exposure normalizes the long-term effects of maternal stress on post-operative pain in Sprague-Dawley rat offspring.Crossref | GoogleScholarGoogle Scholar | 23437400PubMed |
Laplante, P., Diorio, J., and Meaney, M. J. (2002). Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Res. Dev. Brain Res. 139, 199–203.
| Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor.Crossref | GoogleScholarGoogle Scholar | 12480134PubMed |
Lisboa, S. F. S., Oliveira, P. E., Costa, L. C., Venâncio, E. J., and Moreira, E. G. (2007). Behavioral evaluation of male and female mice pups exposed to fluoxetine during pregnancy and lactation. Pharmacology 80, 49–56.
| Behavioral evaluation of male and female mice pups exposed to fluoxetine during pregnancy and lactation.Crossref | GoogleScholarGoogle Scholar |
Marques, B. V. D., Higashi, C. M., Daniella, D. R. B., Zanluqui, N. G., Gregório, T. F., Pinge-Filho, P., Gerardin, D. C. C., Pelosi, G. G., Moreira, E. G., and Ceravolo, G. S. (2017). Intrauterine and lactation exposure to fluoxetine blunted in the offspring the aortic adaptive response induced by acute restraint stress. Eur. J. Pharmacol. 813, 147–152.
| Intrauterine and lactation exposure to fluoxetine blunted in the offspring the aortic adaptive response induced by acute restraint stress.Crossref | GoogleScholarGoogle Scholar |
Matsumoto, A. K., Higashi, C. M., Bonifácio, K. L., Barbosa, M. A., Klein, R. M., Filgueiras, G. B., Ceravolo, G. S., and Moreira, E. G. (2016). Co-exposure to fish oil or folic acid does not reverse effects in the progeny induced by maternal exposure to fluoxetine. Neurotoxicol. Teratol. 56, 1–8.
| Co-exposure to fish oil or folic acid does not reverse effects in the progeny induced by maternal exposure to fluoxetine.Crossref | GoogleScholarGoogle Scholar | 27216872PubMed |
Meaney, M. J., Diorio, J., Francis, D., Larocque, S., O’Donnell, D., Smythe, J. W., Sharma, S., and Tannenbaum, B. (1994). Environmental regulation of the development of glucocorticoid receptor systems in the rat forebrain. The role of serotonin. Ann. N. Y. Acad. Sci. 746, 260–274.
| Environmental regulation of the development of glucocorticoid receptor systems in the rat forebrain. The role of serotonin.Crossref | GoogleScholarGoogle Scholar | 7825882PubMed |
Montero, D., de Ceballos, M. L., and Del Rio, J. (1990). Down-regulation of 3H-imipramine binding sites in rat cerebral cortex after prenatal exposure to antidepressants. Life Sci. 46, 1597–1600.
| Down-regulation of 3H-imipramine binding sites in rat cerebral cortex after prenatal exposure to antidepressants.Crossref | GoogleScholarGoogle Scholar |
Parent, A., Descarries, L., and Beaudet, A. (1981). Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6, 115–138.
| Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine.Crossref | GoogleScholarGoogle Scholar | 6164006PubMed |
Pawluski, J. L., Rayen, I., Niessen, N. A., Kristensen, S., van Donkelaar, E. L., Balthazart, J., Steinbusch, H. W., and Charlier, T. D. (2012). Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring. Neuroscience 220, 131–141.
| Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring.Crossref | GoogleScholarGoogle Scholar | 22728102PubMed |
Pivonello, R., Ferone, D., de Herder, W. W., de Krijger, R. R., Waaijers, M., Mooij, D. M., van Koetsveld, P. M., Barreca, A., Del Basso De Caro, M. L., Lombardi, G., Colao, A., Lamberts, S. W. J., and Hofland, L. J. (2004). Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors. J. Clin. Endocrinol. Metab. 89, 4493–4502.
| Dopamine receptor expression and function in human normal adrenal gland and adrenal tumors.Crossref | GoogleScholarGoogle Scholar | 15356054PubMed |
Pohland, R. C., Byrd, T. K., Hamilton, M., and Koons, J. R. (1989). Placental transfer and fetal distribution of fluoxetine in the rat. Toxicol. Appl. Pharmacol. 98, 198–205.
| Placental transfer and fetal distribution of fluoxetine in the rat.Crossref | GoogleScholarGoogle Scholar | 2785300PubMed |
Ramirez, V. D., and Sawyer, C. H. (1965). Advancement of puberty in the female rat by estrogen. Endocrinology 76, 1158–1168.
| Advancement of puberty in the female rat by estrogen.Crossref | GoogleScholarGoogle Scholar | 14301523PubMed |
Ramos, A. C., Dos Santos, A. H., Silveira, K. M., Kiss, A. C. I., Mesquita, S. F. P., and Gerardin, D. C. C. (2016). Maternal treatment with fluoxetine promotes testicular alteration in male rat pups. Reprod. Fertil. Dev. 28, 1206–1213.
| Maternal treatment with fluoxetine promotes testicular alteration in male rat pups.Crossref | GoogleScholarGoogle Scholar |
Rey-Ares, V., Lazarov, N., Berg, D., Berg, U., Kunz, L., and Mayerhofer, A. (2007). Dopamine receptor repertoire of human granulosa cells. Reprod. Biol. Endocrinol. 5, 40.
| Dopamine receptor repertoire of human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 17961240PubMed |
Romero, G., Toscano, E., and Del Rio, J. (1994). Effect of prenatal exposure to antidepressants on 5-HT-stimulated phosphoinositide hydrolysis and 5-HT2 receptors in rat brain. Gen. Pharmacol. 25, 851–856.
| Effect of prenatal exposure to antidepressants on 5-HT-stimulated phosphoinositide hydrolysis and 5-HT2 receptors in rat brain.Crossref | GoogleScholarGoogle Scholar | 7835628PubMed |
Shen, W., Chen, J., Yin, J., and Wang, S. L. (2016). Selenium protects reproductive system and foetus development in a rat model of gestational lead exposure. Eur. Rev. Med. Pharmacol. Sci. 20, 773–780.
| 26957284PubMed |
Smit-Rigter, L. A., Noorlander, C. W., Von Oerthel, L., Chameau, P., Smidt, M. P., and Van Hooft, J. A. (2012). Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour. Neuropharmacology 62, 865–870.
| Prenatal fluoxetine exposure induces life-long serotonin 5-HT3 receptor-dependent cortical abnormalities and anxiety-like behaviour.Crossref | GoogleScholarGoogle Scholar | 21964434PubMed |
Spritzer, P. M., dos Reis, F. M., Franci, C. R., and Anselmo-Franci, J. A. (2012). Gônadas. In ‘Fisiologia’. (Ed. M. Aires.) pp. 1115–1138. (Guanabara Koogan: Rio de Janeiro.)
Sullivan Hanley, N. R., and Van de Kar, L. D. (2003). Serotonin and the neuroendocrine regulation of the hypothalamic–pituitary–adrenal axis in health and disease. Vitam. Horm. 66, 189–255.
| Serotonin and the neuroendocrine regulation of the hypothalamic–pituitary–adrenal axis in health and disease.Crossref | GoogleScholarGoogle Scholar |
United States Environmental Protection Agency (USEPA) (2009a). ‘Endocrine Disruptor Screening Program Test Guidelines. OPPTS 890.1500: Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Male Rats.’ (USEPA.)
United States Environmental Protection Agency (USEPA) (2009b). ‘Endocrine Disruptor Screening Program Test Guidelines. OPPTS 890.1450: Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female Rats.’ (USEPA.)
Vieira, M. L., Hamada, R. Y., Gonzaga, N. I., Bacchi, A. D., Barbieri, M., Moreira, E. G., Mesquita, Sde F., and Gerardin, D. C. (2013). Could maternal exposure to the antidepressants fluoxetine and St. John’s Wort induce long-term reproductive effects on male rats? Reprod. Toxicol. 35, 102–107.
| Could maternal exposure to the antidepressants fluoxetine and St. John’s Wort induce long-term reproductive effects on male rats?Crossref | GoogleScholarGoogle Scholar | 22824787PubMed |
Whitaker-Azmitia, P. M., Druse, M., Walker, P., and Lauder, J. M. (1995). Serotonin as a developmental signal. Behav. Brain Res. 73, 19–29.
| Serotonin as a developmental signal.Crossref | GoogleScholarGoogle Scholar |
Zoega, H., Kieler, H., Norgaard, M., Furu, K., Valdimarsdottir, U., Brandt, L., and Haglund, B. (2015). Use of SSRI and SNRI antidepressants during pregnancy: a population-based study from Denmark, Iceland, Norway and Sweden. PLoS One 10, e0144474.
| Use of SSRI and SNRI antidepressants during pregnancy: a population-based study from Denmark, Iceland, Norway and Sweden.Crossref | GoogleScholarGoogle Scholar | 26657647PubMed |