Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements?

Marc Yeste A C , Sergi Bonet A , Joan E. Rodríguez-Gil B and Maria M. Rivera Del Álamo B
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Unit of Cell Biology, Department of Biology, Institute of Food and Agricultural Technology, Faculty of Sciences, University of Girona, C/ Maria Aurèlia Campany 69, Campus Montilivi, E-17003 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Building V, Campus Bellaterra s/n, E-08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.

C Corresponding author. Email: marc.yeste@udg.edu

Reproduction, Fertility and Development 30(6) 789-798 https://doi.org/10.1071/RD17475
Submitted: 7 November 2017  Accepted: 13 January 2018   Published: 14 March 2018

Abstract

Computer-aided sperm analysis (CASA) is now routinely used in IVF clinics, animal breeding centres and research laboratories. Although CASA provides a more objective way to evaluate sperm parameters, a significant number of factors can affect these measurements. This paper classifies these factors into four categories: (1) sample and slide (e.g. preincubation time, type of specimen and type of chamber slide); (2) microscope (e.g. light source and microscope stage); (3) hardware and software, including the settings of each system; and (4) user-related factors. We review the effects of the different factors in each category on the measurements made and emphasise the need to take measures to standardise evaluations. The take-home message of the present article is that there are several commercial and useful CASA systems, and all are appropriate for routine analysis. Non-commercial systems may also be good choices when the user needs to adapt the device to specific experimental conditions. In both cases (commercial and non-commercial), it is important that standard protocols are put in place for evaluation, as well as methods to validate the system.

Additional keywords: animal, computer-aided sperm analysis (CASA), human, spermatozoa.


References

Abaigar, T., Holt, W. V., Harrison, R. A., and del Barrio, G. (1999). Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol. Reprod. 60, 32–41.
Sperm subpopulations in boar (Sus scrofa) and gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFymtA%3D%3D&md5=4b952b68134a6a2b14a3285ba42c3b2fCAS |

Amann, R. P., and Katz, D. F. (2004). Andrology lab corner: reflections on CASA after 25 years. J. Androl. 25, 317–325.
Andrology lab corner: reflections on CASA after 25 years.Crossref | GoogleScholarGoogle Scholar |

Amann, R. P., and Waberski, D. (2014). Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81, 5–17.
Computer-assisted sperm analysis (CASA): capabilities and potential developments.Crossref | GoogleScholarGoogle Scholar |

Battut, I. B., Kempfer, A., Lemasson, N., Chevrier, L., and Camugli, S. (2017). Prediction of the fertility of stallion frozen–thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry. Theriogenology 97, 186–200.
Prediction of the fertility of stallion frozen–thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry.Crossref | GoogleScholarGoogle Scholar |

Bielas, W., Niżański, W., Partyka, A., Rząsa, A., and Mordak, R. (2017). Effect of long-term storage in Safe Cell+ extender on boar sperm DNA integrity and other key sperm parameters. Acta Vet. Scand. 59, 58.
Effect of long-term storage in Safe Cell+ extender on boar sperm DNA integrity and other key sperm parameters.Crossref | GoogleScholarGoogle Scholar |

Björndahl, L., Barratt, C. L., Fraser, L. R., Kvist, U., and Mortimer, D. (2002). ESHRE basic semen analysis courses 1995–1999: immediate beneficial effects of standardized training. Hum. Reprod. 17, 1299–1305.
ESHRE basic semen analysis courses 1995–1999: immediate beneficial effects of standardized training.Crossref | GoogleScholarGoogle Scholar |

Boryshpolets, S., Kowalski, R. K., Dietrich, G. J., Dzyuba, B., and Ciereszko, A. (2013). Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters. Theriogenology 80, 758–765.
Different computer-assisted sperm analysis (CASA) systems highly influence sperm motility parameters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sfotlCjtw%3D%3D&md5=cc14876874e7b9dc21abe9c74d4b4da6CAS |

Boryshpolets, S., Pérez-Cerezales, S., and Eisenbach, M. (2015). Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation. Hum. Reprod. 30, 884–892.
Behavioral mechanism of human sperm in thermotaxis: a role for hyperactivation.Crossref | GoogleScholarGoogle Scholar |

Christensen, P., Stryhn, H., and Hansen, C. (2005). Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers. Theriogenology 63, 992–1003.
Discrepancies in the determination of sperm concentration using Bürker-Türk, Thoma and Makler counting chambers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fot1Kmsw%3D%3D&md5=2777ed1586a7bf54d7efbb4d409173aaCAS |

Coetzee, K., and Menkveld, R. (2001). Validation of a new disposable counting chamber. Arch. Androl. 47, 153–156.
Validation of a new disposable counting chamber.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mrgs1Cksw%3D%3D&md5=e1e91c56c0078a3b66293acb96b63bbbCAS |

Comhaire, F. H., Huysse, S., Hinting, A., Vermeulen, L., and Schoonjans, F. (1992). Objective semen analysis: has the target been reached? Hum. Reprod. 7, 237–241.
Objective semen analysis: has the target been reached?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383ltVyntg%3D%3D&md5=9f596a5fe10e69da0a3e9fce650be329CAS |

Contri, A., Valorz, C., Faustini, M., Wegher, L., and Carluccio, A. (2010). Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa. Theriogenology 74, 424–435.
Effect of semen preparation on casa motility results in cryopreserved bull spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Cooper, T. G. (2010). Semen analysis. In ‘Andrology’. (Eds E. Nieschlag, H. M. Behre, and S. Nieschlag.) pp. 125–138. (Springer: Berlin.)

Davis, R. O., Rothmann, S. A., and Overstreet, J. W. (1992). Accuracy and precision of computer-aided sperm analysis in multicenter studies. Fertil. Steril. 57, 648–653.
Accuracy and precision of computer-aided sperm analysis in multicenter studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387lsFeqtA%3D%3D&md5=113f4283897c74b187af98a3f283929fCAS |

Dearing, C. G., Kilburn, S., and Lindsay, K. S. (2014). Validation of the sperm class analyser CASA system for sperm counting in a busy diagnostic semen analysis laboratory. Hum. Fertil. (Camb.) 17, 37–44.
Validation of the sperm class analyser CASA system for sperm counting in a busy diagnostic semen analysis laboratory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Cmt7w%3D&md5=7d36c2ceb4cc3a62f74af8d63b35ffb2CAS |

Douglas-Hamilton, D. H., Smith, N. G., Kuster, C. E., Vermeiden, J. P., and Althouse, G. C. (2005a). Particle distribution in low-volume capillary-loaded chambers. J. Androl. 26, 107–114.

Douglas-Hamilton, D. H., Smith, N. G., Kuster, C. E., Vermeiden, J. P., and Althouse, G. C. (2005b). Capillary-loaded particle fluid dynamics: effect on estimation of sperm concentration. J. Androl. 26, 115–122.

Ehlers, J., Behr, M., Bollwein, H., Beyerbach, M., and Waberski, D. (2011). Standardization of computer-assisted semen analysis using an e-learning application. Theriogenology 76, 448–454.
Standardization of computer-assisted semen analysis using an e-learning application.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnltVSkuw%3D%3D&md5=76939989cf0eb45c1b9f1d3cf2758475CAS |

Elsayed, M., El-Sherry, T. M., and Abdelgawad, M. (2015). Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J. Theriogenology 84, 1367–1377.
Development of computer-assisted sperm analysis plugin for analyzing sperm motion in microfluidic environments using Image-J.Crossref | GoogleScholarGoogle Scholar |

European Society for Human Reproduction and Embryology (ESHRE) (1998). Guidelines on the application of CASA technology in the analysis of spermatozoa. ESHRE Andrology Special Interest Group. European Society for Human Reproduction and Embryology. Hum. Reprod. 13, 142–145.
Guidelines on the application of CASA technology in the analysis of spermatozoa. ESHRE Andrology Special Interest Group. European Society for Human Reproduction and Embryology.Crossref | GoogleScholarGoogle Scholar |

Estrada, E., Rivera Del Álamo, M. M., Rodríguez-Gil, J. E., and Yeste, M. (2017a). The addition of reduced glutathione to cryopreservation media induces changes in the structure of motile subpopulations of frozen–thawed boar sperm. Cryobiology 78, 56–64.
The addition of reduced glutathione to cryopreservation media induces changes in the structure of motile subpopulations of frozen–thawed boar sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFKht7rJ&md5=4061b6b9935610710285f99dd9b36c06CAS |

Estrada, E., Rodríguez-Gil, J. E., Rivera del Álamo, M. M., Peña, A., and Yeste, M. (2017b). Effects of reduced glutathione on acrosin activity in frozen–thawed boar spermatozoa. Reprod. Fertil. Dev. 29, 283–293.
| 1:CAS:528:DC%2BC2sXhs1WrtA%3D%3D&md5=12bcdbbcec468ffba5bac213c14afe11CAS |

Farrell, P., Trouern-Trend, V., Foote, R. H., and Douglas-Hamilton, D. (1995). Repeatability of measurements on human, rabbit, and bull sperm by computer-assisted sperm analysis when comparing individual fields and means of 12 fields. Fertil. Steril. 64, 208–210.
| 1:STN:280:DyaK2MzgvFCmtg%3D%3D&md5=a10e873b1a603716cac4c62a60a27ef2CAS |

Fernández-Gago, R., Álvarez-Rodríguez, M., Alonso, M. E., González, J. R., Alegre, B., Domínguez, J. C., and Martínez-Pastor, F. (2017). Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations. Reprod. Fertil. Dev. 29, 1576–1584.
Thawing boar semen in the presence of seminal plasma improves motility, modifies subpopulation patterns and reduces chromatin alterations.Crossref | GoogleScholarGoogle Scholar |

Fu, J., Li, Y., Wang, L., Zhen, L., Yang, Q., Li, P., and Li, X. (2017). Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17°C. Theriogenology 102, 87–97.
Bovine serum albumin and skim-milk improve boar sperm motility by enhancing energy metabolism and protein modifications during liquid storage at 17°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXht1Cktr7K&md5=0efed3508a96b2583a3d0526aa23577fCAS |

Gervasi, M. G., Rapanelli, M., Ribeiro, M. L., Farina, M., Billi, S., Franchi, A. M., and Perez Martinez, S. (2009). The endocannabinoid system in bull sperm and bovine oviductal epithelium: role of anandamide in sperm-oviduct interaction. Reproduction 137, 403–414.
The endocannabinoid system in bull sperm and bovine oviductal epithelium: role of anandamide in sperm-oviduct interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2ksbs%3D&md5=bbf07c27975a11326184204a66cdd92cCAS |

Giaretta, E., Munerato, M., Yeste, M., Galeati, G., Spinaci, M., Tamanini, C., Mari, G., and Bucci, D. (2017). Implementing an open-access CASA software for the assessment of stallion sperm motility: relationship with other sperm quality parameters. Anim. Reprod. Sci. 176, 11–19.
Implementing an open-access CASA software for the assessment of stallion sperm motility: relationship with other sperm quality parameters.Crossref | GoogleScholarGoogle Scholar |

Gloria, A., Carluccio, A., Contri, A., Wegher, L., Valorz, C., and Robbe, D. (2013). The effect of the chamber on kinetic results in cryopreserved bull spermatozoa. Andrology 1, 879–885.
The effect of the chamber on kinetic results in cryopreserved bull spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sbksVaiuw%3D%3D&md5=e8ccdcd2782c5381d0649827f73873ceCAS |

Guidobaldi, H. A., Cubilla, M., Moreno, A., Molino, M. V., Bahamondes, L., and Giojalas, L. C. (2017). Sperm chemorepulsion, a supplementary mechanism to regulate fertilization. Hum. Reprod. 32, 1560–1573.
Sperm chemorepulsion, a supplementary mechanism to regulate fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1cbivF2isA%3D%3D&md5=9234a10b99712cf420583a61d8df98d1CAS |

Hidalgo, M., Ortiz, I., Dorado, J., Morrell, J. M., Gosálvez, J., Consuegra, C., Díaz-Jiménez, M., Pereira, B., and Crespo, F. (2017). Stallion sperm selection prior to freezing using a modified colloid swim-up procedure without centrifugation. Anim. Reprod. Sci. 185, 83–88.
Stallion sperm selection prior to freezing using a modified colloid swim-up procedure without centrifugation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1cbgt1Gktw%3D%3D&md5=a9a159338fd8ef3d326f8b40264f07d7CAS |

Holt, W. V., and Harrison, R. A. (2002). Bicarbonate stimulation of boar sperm motility via a protein kinase A-dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J. Androl. 23, 557–565.
| 1:CAS:528:DC%2BD38Xlt1KhsLc%3D&md5=6420228aa2fc03733ef6d7d3947c70faCAS |

Holt, W. V., Watson, P., Curry, M., and Holt, C. (1994). Reproducibility of computer-aided semen analysis: comparison of five different systems used in a practical workshop. Fertil. Steril. 62, 1277–1282.
Reproducibility of computer-aided semen analysis: comparison of five different systems used in a practical workshop.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fks1CitA%3D%3D&md5=8d1544391f50793c9f20d9a319555897CAS |

Hoogewijs, M. K., de Vliegher, S. P., Govaere, J. L., de Schauwer, C., de Kruif, A., and van Soom, A. (2012). Influence of counting chamber type on CASA outcomes of equine semen analysis. Equine Vet. J. 44, 542–549.
Influence of counting chamber type on CASA outcomes of equine semen analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zosFChtA%3D%3D&md5=dcc9f4120c955cced26798fc4f06a033CAS |

Kirkman-Brown, J., and Björndahl, L. (2009). Evaluation of a disposable plastic Neubauer counting chamber for semen analysis. Fertil. Steril. 91, 627–631.
Evaluation of a disposable plastic Neubauer counting chamber for semen analysis.Crossref | GoogleScholarGoogle Scholar |

Köse, M., Sokmensuer, L. K., Demir, A., Bozdag, G., and Gunalp, S. (2014). Manual versus computer-automated semen analysis. Clin. Exp. Obstet. Gynecol. 41, 662–664.

Kraemer, M., Fillion, C., Martin-Pont, B., and Auger, J. (1998). Factors influencing human sperm kinematic measurements by the Celltrak computer-assisted sperm analysis system. Hum. Reprod. 13, 611–619.
Factors influencing human sperm kinematic measurements by the Celltrak computer-assisted sperm analysis system.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3jt1WgsQ%3D%3D&md5=60954729224a61eae823bdb7f3feeb54CAS |

Kuster, C. (2005). Sperm concentration determination between hemacytometric and CASA systems: why they can be different. Theriogenology 64, 614–617.
Sperm concentration determination between hemacytometric and CASA systems: why they can be different.Crossref | GoogleScholarGoogle Scholar |

Le Lannou, D., Griveau, J. F., Le Pichon, J. P., and Quero, J. C. (1992). Effects of chamber depth on the motion pattern of human spermatozoa in semen or in capacitating medium. Hum. Reprod. 7, 1417–1421.
Effects of chamber depth on the motion pattern of human spermatozoa in semen or in capacitating medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7nvFGgsA%3D%3D&md5=0b655e762975a648d814185d2624ef10CAS |

Lenz, R. W., Kjelland, M. E., Vonderhaar, K., Swannack, T. M., and Moreno, J. F. (2011). A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer. J. Anim. Sci. 89, 383–388.
A comparison of bovine seminal quality assessments using different viewing chambers with a computer-assisted semen analyzer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFSnur4%3D&md5=d8394f3ee5261113d086b9ddb0951ee3CAS |

Luna, C., Yeste, M., Rivera Del Álamo, M. M., Domingo, J., Casao, A., Rodríguez-Gil, J. E., Pérez-Pé, R., Cebrián-Pérez, J. A., and Muiño-Blanco, T. (2017). Effect of seminal plasma proteins on the motile sperm subpopulations in ram ejaculates. Reprod. Fertil. Dev. 29, 394–405.
| 1:CAS:528:DC%2BC2sXhs1Wkuw%3D%3D&md5=0948fe858f1b7f1ca35dff50c8206ac8CAS |

Makler, A. (2000). Potential sources of error with the Makler counting chamber. Fertil. Steril. 73, 1066–1067.
Potential sources of error with the Makler counting chamber.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czhvVWlsw%3D%3D&md5=50c2b79cda0dbdc0d6f5cacfacdd750dCAS |

Marín-Briggiler, C. I., Tezón, J. G., Miranda, P. V., and Vázquez-Levin, M. H. (2002). Effect of incubating human sperm at room temperature on capacitation-related events. Fertil. Steril. 77, 252–259.
Effect of incubating human sperm at room temperature on capacitation-related events.Crossref | GoogleScholarGoogle Scholar |

Martin-Hidalgo, D., Hurtado de Llera, A., Yeste, M., Cruz Gil, M., Bragado, M. J., and Garcia-Marin, L. J. (2013). Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage. Theriogenology 80, 285–294.
Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslCqurk%3D&md5=d2d2ad6f7b03ba29aef267bc2884303fCAS |

Morrell, J. M., Nongbua, T., Valeanu, S., Lima Verde, I., Lundstedt-Enkel, K., Edman, A., and Johannisson, A. (2017). Sperm quality variables as indicators of bull fertility may be breed dependent. Anim. Reprod. Sci. 185, 42–52.
Sperm quality variables as indicators of bull fertility may be breed dependent.Crossref | GoogleScholarGoogle Scholar |

Morris, A. R., Coutts, J. R., and Robertson, L. (1996). A detailed study of the effect of videoframe rates of 25, 30 and 60 Hertz on human sperm movement characteristics. Hum. Reprod. 11, 304–310.
A detailed study of the effect of videoframe rates of 25, 30 and 60 Hertz on human sperm movement characteristics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ls12itw%3D%3D&md5=5ebf602414d17c07d23f33747dfdf335CAS |

Mortimer, D., and Mortimer, S. T. (2013). Computer-aided sperm analysis (CASA) of sperm motility and hyperactivation. Methods Mol. Biol. 927, 77–87.
Computer-aided sperm analysis (CASA) of sperm motility and hyperactivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Snu74%3D&md5=8180071fd205ebb6e42aca0560b98894CAS |

Mortimer, D., Aitken, R. J., Mortimer, S. T., and Pacey, A. A. (1995). Workshop report: clinical CASA – the quest for a consensus. Reprod. Fertil. Dev. 7, 951–959.
Workshop report: clinical CASA – the quest for a consensus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ns1alug%3D%3D&md5=8eecc54ca27aa9b17c0f7594777a3a62CAS |

Mortimer, S. T., van der Horst, G., and Mortimer, D. (2015). The future of computer-aided sperm analysis. Asian J. Androl. 17, 545–553.
The future of computer-aided sperm analysis.Crossref | GoogleScholarGoogle Scholar |

Owen, D. H., and Katz, D. F. (1993). Sampling factors influencing accuracy of sperm kinematic analysis. J. Androl. 14, 210–221.
| 1:STN:280:DyaK2c%2Fht1aitA%3D%3D&md5=20e387e32924f1135d64801d2016faf3CAS |

Peng, N., Zou, X., and Li, L. (2015). Comparison of different counting chambers using a computer-assisted semen analyzer. Syst Biol Reprod Med 61, 307–313.

Purchase, C. F., and Earle, P. T. (2012). Modifications to the ImageJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data. J. Appl. Ichthyology 28, 1013–1016.
Modifications to the ImageJ computer assisted sperm analysis plugin greatly improve efficiency and fundamentally alter the scope of attainable data.Crossref | GoogleScholarGoogle Scholar |

Ramió-Lluch, L., Yeste, M., Fernández-Novell, J. M., Estrada, E., Rocha, L., Cebrián-Pérez, J. A., Muiño-Blanco, T., Concha, I. I., Ramírez, A., and Rodríguez-Gil, J. E. (2014). Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels. Reprod. Fertil. Dev. 26, 883–897.
Oligomycin A-induced inhibition of mitochondrial ATP-synthase activity suppresses boar sperm motility and in vitro capacitation achievement without modifying overall sperm energy levels.Crossref | GoogleScholarGoogle Scholar |

Rijsselaere, T., Van Soon, A., Maes, D., and de Kruif, A. (2003). Effect of technical settings on canine semen motility parameters measured by the Hamilton–Thorne analyzer. Theriogenology 60, 1553–1568.
Effect of technical settings on canine semen motility parameters measured by the Hamilton–Thorne analyzer.Crossref | GoogleScholarGoogle Scholar |

Rijsselaere, T., Van Soom, A., Maes, D., and Nizanski, W. (2012). Computer-assisted sperm analysis in dogs and cats: an update after 20 years. Reprod. Domest. Anim. 47, 204–207.
Computer-assisted sperm analysis in dogs and cats: an update after 20 years.Crossref | GoogleScholarGoogle Scholar |

Tomlinson, M., Turner, J., Powell, G., and Sakkas, D. (2001). One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods? Hum. Reprod. 16, 121–124.
One-step disposable chambers for sperm concentration and motility assessment: how do they compare with the World Health Organization’s recommended methods?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7ktVertQ%3D%3D&md5=bf144c6f128c01f38c977792e390f0a7CAS |

Urbano, L. F., Masson, P., VerMilyea, M., and Kam, M. (2017). Automatic tracking and motility analysis of human sperm in time-lapse images. IEEE Trans. Med. Imaging 36, 792–801.
Automatic tracking and motility analysis of human sperm in time-lapse images.Crossref | GoogleScholarGoogle Scholar |

Verstegen, J., Iguer-Ouada, M., and Onclin, K. (2002). Computer assisted semen analyzers in andrology research and veterinary practice. Theriogenology 57, 149–179.
Computer assisted semen analyzers in andrology research and veterinary practice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fksl2mtA%3D%3D&md5=f7df33962b8de34ef0fd69f0834e96fcCAS |

Vicente-Carrillo, A., Álvarez-Rodríguez, M., and Rodríguez-Martínez, H. (2017). The CatSper channel modulates boar sperm motility during capacitation. Reprod. Biol. 17, 69–78.
The CatSper channel modulates boar sperm motility during capacitation.Crossref | GoogleScholarGoogle Scholar |

World Health Organization (WHO) (2010). ‘WHO Laboratory Manual for the Examination and Processing of Human Semen.’ 5th edn. (WHO: Geneva.)

Wilson-Leedy, J. G., and Ingermann, R. L. (2007). Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters. Theriogenology 67, 661–672.
Development of a novel CASA system based on open source software for characterization of zebrafish sperm motility parameters.Crossref | GoogleScholarGoogle Scholar |

Yan, W., Kanno, C., Oshima, E., Kuzuma, Y., Kim, S. W., Bai, H., Takahashi, M., Yanagawa, Y., Nagano, M., Wakamatsu, J. I., and Kawahara, M. (2017). Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters. Anim. Reprod. Sci. 185, 195–204.
Enhancement of sperm motility and viability by turmeric by-product dietary supplementation in roosters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtl2ltbnN&md5=a87e7d7e61cfaff21affe13684f7ba4eCAS |

Yeste, M., Estrada, E., Rocha, L. G., Marín, H., Rodríguez-Gil, J. E., and Miró, J. (2015a). Cryotolerance of stallion sperm is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 3, 395–407.
Cryotolerance of stallion sperm is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXntFSgtL8%3D&md5=fb6c1b0e3b25a87b22cd1c9cb29ca04fCAS |

Yeste, M., Fernández-Novell, J. M., Ramió-Lluch, L., Estrada, E., Rocha, L. G., Cebrián-Pérez, J. A., Muiño-Blanco, T., Concha, I. I., Ramírez, A., and Rodríguez-Gil, J. E. (2015b). Intracellular calcium movements of boar spermatozoa during ‘in vitro’ capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model. Andrology 3, 729–747.
Intracellular calcium movements of boar spermatozoa during ‘in vitro’ capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1GkurfN&md5=881f26f9d6c17ae23caf71dc0d5ee646CAS |

Yeste, M., Codony, F., Estrada, E., Lleonart, M., Balasch, S., Peña, A., Bonet, S., and Rodríguez-Gil, J. E. (2016). Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Sci. Rep. 6, 22569.
Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjsFersro%3D&md5=85b36dafda08a1103df3c445bcd092a4CAS |

Yeung, C. H., Cooper, T. G., and Nieschlag, E. (1997). A technique for standardization and quality control of subjective sperm motility assessments in semen analysis. Fertil. Steril. 67, 1156–1158.
A technique for standardization and quality control of subjective sperm motility assessments in semen analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szhvFGmtQ%3D%3D&md5=1eb6596d9f9eb74134f062c096fc0bc7CAS |

Zuvela, E., Junk, S., Moska, N., and Matson, P. (2011). The use of latex beads in external quality assurance and internal quality control for routine semen analysis. Reprod. Biol. 11, 264–275.
The use of latex beads in external quality assurance and internal quality control for routine semen analysis.Crossref | GoogleScholarGoogle Scholar |