Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Paternal priming of maternal tissues to optimise pregnancy success

John J. Bromfield A B , Jason A. Rizo A and Laila A. Ibrahim A
+ Author Affiliations
- Author Affiliations

A D. H. Barron Reproductive and Perinatal Biology Research Program, Department of Animal Sciences, University of Florida, PO Box 110910, Gainesville, FL 32611-0910, USA.

B Corresponding author. Email: jbromfield@ufl.edu

Reproduction, Fertility and Development 30(1) 50-55 https://doi.org/10.1071/RD17345
Published: 4 December 2017

Abstract

The question of ‘how does the allogeneic fetus survive gestation in the face of the maternal immune system?’ has yet to be definitively answered. Several acceptable mechanisms exist to facilitate survival of the semi-allogeneic fetus in various species; paramount is the immunological separation of maternal and fetal tissues during gestation. However, keen observation of the maternal immune system during pregnancy has noted maternal immune tolerance to paternal-specific antigens. A mechanism by which the maternal immune system tolerates specific paternal antigens expressed on the fetus would be far more beneficial than the previously proposed immune indolence that would leave the mother susceptible to infection. In species like human or rodent, implantation occurs days after fertilisation and, as such, the mechanisms to establish antigen-specific tolerance must be initiated very early during pregnancy. We and others propose that these mechanisms are initiated at the time of insemination when paternal antigens are first introduced to the maternal immune system. Indeed, a new paradigm demonstrating the importance of paternal–maternal communication at the time of insemination is becoming evident as it relates to maternal tolerance to fetal antigen and ultimately pregnancy success.

Additional keywords: fetal programming, immune modulation, insemination, seminal plasma.


References

Aluvihare, V. R., Kallikourdis, M., and Betz, A. G. (2004). Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271.
Regulatory T cells mediate maternal tolerance to the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFeitL8%3D&md5=f07a371d5e9d1aa06570ab786ea7d549CAS |

Anderson, D. J., and Tarter, T. H. (1982). Immunosuppressive effects of mouse seminal plasma components in vivo and in vitro. J. Immunol. 128, 535–539.
| 1:STN:280:DyaL38%2FpvFCisw%3D%3D&md5=4e9459add6759a684cb2b27dc991550bCAS |

Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D., and Wolfner, M. F. (2011). Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40.
Insect seminal fluid proteins: identification and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlSiurY%3D&md5=1a1fdc75ca81610c601c2f2e4c28db7bCAS |

Beer, A. E., and Billingham, R. E. (1974). Host responses to intra-uterine tissue, cellular and fetal allografts. J. Reprod. Fertil. Suppl. 21, 59–88.

Bromfield, J. J., Schjenken, J. E., Chin, P. Y., Care, A. S., Jasper, M. J., and Robertson, S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl Acad. Sci. USA 111, 2200–2205.
Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOqtLc%3D&md5=8edd01884c98f5f67710f9a74e3b3ff8CAS |

Chaouat, G., Tranchot Diallo, J., Volumenie, J. L., Menu, E., Gras, G., Delage, G., and Mognetti, B. (1997). Immune suppression and Th1/Th2 balance in pregnancy revisited: a (very) personal tribute to Tom Wegmann. Am. J. Reprod. Immunol. 37, 427–434.
Immune suppression and Th1/Th2 balance in pregnancy revisited: a (very) personal tribute to Tom Wegmann.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2sznt1SgsQ%3D%3D&md5=cc1aa1ad7f5aacc33f869c45f2d13aa8CAS |

Constant, S. L., and Bottomly, K. (1997). Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322.
Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisVCnuro%3D&md5=bb919f34b23960be9d66aec8f87a26a0CAS |

Coulam, C. B., and Stern, J. J. (1995). Effect of seminal plasma on implantation rates. Early Pregnancy 1, 33–36.
| 1:STN:280:DyaK1c%2FivFGktw%3D%3D&md5=70f6813b7dc732dfe2b43b019e3a35fcCAS |

De, M., Choudhuri, R., and Wood, G. W. (1991). Determination of the number and distribution of macrophages, lymphocytes and granulocytes in the mouse uterus from mating through implantation. J. Leukoc. Biol. 50, 252–262.
| 1:STN:280:DyaK3MzhtFanug%3D%3D&md5=adb7c44ea35a174e59ed6f3929f45916CAS |

de Moraes, A. A., and Hansen, P. J. (1997). Granulocyte–macrophage colony-stimulating factor promotes development of in vitro produced bovine embryos. Biol. Reprod. 57, 1060–1065.
Granulocyte–macrophage colony-stimulating factor promotes development of in vitro produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFSntL8%3D&md5=a91cc10011303c4e2199215bdb156539CAS |

Egan, R. M., Yorkey, C., Black, R., Loh, W. K., Stevens, J. L., Storozynsky, E., Lord, E. M., Frelinger, J. G., and Woodward, J. G. (2000). In vivo behavior of peptide-specific T cells during mucosal tolerance induction: antigen introduced through the mucosa of the conjunctiva elicits prolonged antigen-specific T cell priming followed by anergy. J. Immunol. 164, 4543–4550.
In vivo behavior of peptide-specific T cells during mucosal tolerance induction: antigen introduced through the mucosa of the conjunctiva elicits prolonged antigen-specific T cell priming followed by anergy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFWmt7o%3D&md5=7f03cac9fb899d530d1349f3ce23a595CAS |

Fahmi, H. A., Hunter, A. G., Markham, R. J., and Seguin, B. E. (1985). Immunosuppressive activity of bovine seminal plasma on bovine lymphocytes in vitro. J. Dairy Sci. 68, 2315–2321.
Immunosuppressive activity of bovine seminal plasma on bovine lymphocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FmtVaqsQ%3D%3D&md5=8f9389cd3d8b4d2a46cf6da361963f37CAS |

Fantini, M. C., Becker, C., Tubbe, I., Nikolaev, A., Lehr, H. A., Galle, P. R., and Neurath, M. F. (2006). Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis. Gut 55, 671–680.
Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Th1 mediated experimental colitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xksl2hur0%3D&md5=4194622b2f347af84d77adabf09d31dbCAS |

Faulkner, L. C., Hopwood, M. L., and Wiltbank, J. N. (1968). Seminal vesiculectomy in bulls. II. Seminal characteristics and breeding trials. J. Reprod. Fertil. 16, 179–182.
Seminal vesiculectomy in bulls. II. Seminal characteristics and breeding trials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1czhvVyrtg%3D%3D&md5=c318498d9285b18c32ca8ece7b2fb020CAS |

Garside, P., and Mowat, A. M. (2001). Oral tolerance. Semin. Immunol. 13, 177–185.
Oral tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFWhu7Y%3D&md5=68f2fd8ef1f2d0cbe8ebd3d8b6b91f66CAS |

Guerin, L. R., Moldenhauer, L. M., Prins, J. R., Bromfield, J. J., Hayball, J. D., and Robertson, S. A. (2011). Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol. Reprod. 85, 397–408.
Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOms7s%3D&md5=110c3875fc8320e9089ee71930b5c63dCAS |

Gutsche, S., von Wolff, M., Strowitzki, T., and Thaler, C. J. (2003). Seminal plasma induces mRNA expression of IL-1beta, IL-6 and LIF in endometrial epithelial cells in vitro. Mol. Hum. Reprod. 9, 785–791.
Seminal plasma induces mRNA expression of IL-1beta, IL-6 and LIF in endometrial epithelial cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVelt7s%3D&md5=59f90c0bcad62eac81183bbc67d43dfcCAS |

Hansen, M., Kurinczuk, J. J., Bower, C., and Webb, S. (2002). The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N. Engl. J. Med. 346, 725–730.
The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Hansen, P. J., Dobbs, K. B., and Denicol, A. C. (2014). Programming of the preimplantation embryo by the embryokine colony stimulating factor 2. Anim. Reprod. Sci. 149, 59–66.
Programming of the preimplantation embryo by the embryokine colony stimulating factor 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVamsLnK&md5=a5e62e8547b1d00aa5d60fe5162662baCAS |

Harper, H. M., Cochrane, L., and Williams, N. A. (1996). The role of small intestinal antigen-presenting cells in the induction of T-cell reactivity to soluble protein antigens: association between aberrant presentation in the lamina propria and oral tolerance. Immunology 89, 449–456.
The role of small intestinal antigen-presenting cells in the induction of T-cell reactivity to soluble protein antigens: association between aberrant presentation in the lamina propria and oral tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVyrtrw%3D&md5=d6a5f999874f5eaa43077366cc4c7972CAS |

Johansson, M., Bromfield, J. J., Jasper, M. J., and Robertson, S. A. (2004). Semen activates the female immune response during early pregnancy in mice. Immunology 112, 290–300.
Semen activates the female immune response during early pregnancy in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks12hsLo%3D&md5=efda15bb9f92a47f4d2f912d67e3b42bCAS |

Kapsenberg, M. L., Hilkens, C. M., Wierenga, E. A., and Kalinski, P. (1999). The paradigm of type 1 and type 2 antigen-presenting cells. Implications for atopic allergy. Clin. Exp. Allergy 29, 33–36.
The paradigm of type 1 and type 2 antigen-presenting cells. Implications for atopic allergy.Crossref | GoogleScholarGoogle Scholar |

Klonoff-Cohen, H. S., Savitz, D. A., Celafo, R. C., and McCann, M. F. (1989). An epidemiologic study of contraception and preeclampsia. JAMA 262, 3143–3147.
An epidemiologic study of contraception and preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2FktFaisg%3D%3D&md5=cb00f3627b6da1b12026f3a1ff4068b1CAS |

Lavranos, T. C., Rathjen, P. D., and Seamark, R. F. (1995). Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos. J. Reprod. Fertil. 105, 331–338.
Trophic effects of myeloid leukaemia inhibitory factor (LIF) on mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslSntA%3D%3D&md5=9321efa19f684ca611f595ad83b0f23aCAS |

Mahajan, S. C., and Menge, A. C. (1967). Influence of reproductive phase on the inflammatory response and rate of sperm removal in the uterus and oviduct of the cow. Am. J. Vet. Res. 28, 1037–1041.
| 1:STN:280:DyaF1c%2FovFWhsA%3D%3D&md5=f537ddcbcf0b142f8e736e7e6e2b2bafCAS |

Maillo, V., Gaora, P. O., Forde, N., Besenfelder, U., Havlicek, V., Burns, G. W., Spencer, T. E., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2015). Oviduct–embryo interactions in cattle: two-way traffic or a one-way street? Biol. Reprod. 92, 144.
Oviduct–embryo interactions in cattle: two-way traffic or a one-way street?Crossref | GoogleScholarGoogle Scholar |

Maillo, V., de Frutos, C., O’Gaora, P., Forde, N., Burns, G. W., Spencer, T. E., Gutierrez-Adan, A., Lonergan, P., and Rizos, D. (2016). Spatial differences in gene expression in the bovine oviduct. Reproduction 152, 37–46.
Spatial differences in gene expression in the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslaqurzK&md5=4794a35cdec4d10ef2ebc48260cd0411CAS |

Marconi, G., Auge, L., Oses, R., Quintana, R., Raffo, F., and Young, E. (1989). Does sexual intercourse improve pregnancy rates in gamete intrafallopian transfer? Fertil. Steril. 51, 357–359.
Does sexual intercourse improve pregnancy rates in gamete intrafallopian transfer?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7gslKjug%3D%3D&md5=69aef40e35f8189004840a6894897099CAS |

Maroni, E. S., and de Sousa, M. A. (1973). The lymphoid organs during pregnancy in the mouse. A comparison between a syngeneic and an allogeneic mating. Clin. Exp. Immunol. 13, 107–124.
| 1:STN:280:DyaE2c%2FmtVelsQ%3D%3D&md5=e15873d6981956d63117aa9c81d2de20CAS |

Mattner, P. E. (1969). Differential leucocytic responses to spermatozoa in the cervix and the uterus in ewes. J. Reprod. Fertil. 18, 297–303.
Differential leucocytic responses to spermatozoa in the cervix and the uterus in ewes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M3hvFGjtA%3D%3D&md5=514c32567ac154eb34a6e5dbc198eae6CAS |

McGuane, J. T., Watson, K. M., Zhang, J., Johan, M. Z., Wang, Z., Kuo, G., Sharkey, D. J., Robertson, S. A., and Hull, M. L. (2015). Seminal plasma promotes lesion development in a xenograft model of endometriosis. Am. J. Pathol. 185, 1409–1422.
Seminal plasma promotes lesion development in a xenograft model of endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmslyntbk%3D&md5=e8309c470c12bcc3a78b3b386d4e3e24CAS |

McMaster, M. T., Newton, R. C., Dey, S. K., and Andrews, G. K. (1992). Activation and distribution of inflammatory cells in the mouse uterus during the preimplantation period. J. Immunol. 148, 1699–1705.
| 1:CAS:528:DyaK38XitFaku7s%3D&md5=516f68c7a9e3f35473a807bbc0b46afcCAS |

Medwar, P. (1953). Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–338.

O’Leary, S., Jasper, M. J., Warnes, G. M., Armstrong, D. T., and Robertson, S. A. (2004). Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 128, 237–247.
Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeit70%3D&md5=d321a74d6bd0595d7a3d38c3e799265bCAS |

Ochsenkühn, R., Strowitzki, T., Gurtner, M., Strauss, A., Schulze, A., Hepp, H., and Hillemanns, P. (2003). Pregnancy complications, obstetric risks, and neonatal outcome in singleton and twin pregnancies after GIFT and IVF. Arch. Gynecol. Obstet. 268, 256–261.
Pregnancy complications, obstetric risks, and neonatal outcome in singleton and twin pregnancies after GIFT and IVF.Crossref | GoogleScholarGoogle Scholar |

Odhiambo, J. F., Poole, D. H., Hughes, L., Dejarnette, J. M., Inskeep, E. K., and Dailey, R. A. (2009). Pregnancy outcome in dairy and beef cattle after artificial insemination and treatment with seminal plasma or transforming growth factor beta-1. Theriogenology 72, 566–571.
Pregnancy outcome in dairy and beef cattle after artificial insemination and treatment with seminal plasma or transforming growth factor beta-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2ns70%3D&md5=36690b83865fb8ad418117042fee11d5CAS |

Palm, F., Walter, I., Budik, S., Kolodziejek, J., Nowotny, N., and Aurich, C. (2008). Influence of different semen extenders and seminal plasma on PMN migration and on expression of IL-1beta, IL-6, TNF-alpha and COX-2 mRNA in the equine endometrium. Theriogenology 70, 843–851.
Influence of different semen extenders and seminal plasma on PMN migration and on expression of IL-1beta, IL-6, TNF-alpha and COX-2 mRNA in the equine endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVamt7zO&md5=8ebf6fc5554b009b1a80946f80a855ebCAS |

Pellegrino, C. A., Morotti, F., Untura, R. M., Pontes, J. H., Pellegrino, M. F., Campolina, J. P., Seneda, M. M., Barbosa, F. A., and Henry, M. (2016). Use of sexed sorted semen for fixed-time artificial insemination or fixed-time embryo transfer of in vitro-produced embryos in cattle. Theriogenology 86, 888–893.
Use of sexed sorted semen for fixed-time artificial insemination or fixed-time embryo transfer of in vitro-produced embryos in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28fpt1Wgsg%3D%3D&md5=b309e3aa7ec640b6964cbb04fe19d5deCAS |

Perri, T., Chen, R., Yoeli, R., Merlob, P., Orvieto, R., Shalev, Y., Ben-Rafael, Z., and Bar-Hava, I. (2001). Are singleton assisted reproductive technology pregnancies at risk of prematurity? J. Assist. Reprod. Genet. 18, 245–249.
Are singleton assisted reproductive technology pregnancies at risk of prematurity?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fit1Chug%3D%3D&md5=5d22ab6f5e50760ccae5e64a092cdf12CAS |

Piazzón, I., Matusevich, M., Déroche, A., Nepomnaschy, I., and Pasqualini, C. D. (1985). Early increase in graft-versus-host reactivity during pregnancy in the mouse. J. Reprod. Immunol. 8, 129–137.
Early increase in graft-versus-host reactivity during pregnancy in the mouse.Crossref | GoogleScholarGoogle Scholar |

Robertson, S. A., and Seamark, R. F. (1992). Granulocyte–macrophage colony stimulating factor (GM-CSF): one of a family of epithelial cell-derived cytokines in the preimplantation uterus. Reprod. Fertil. Dev. 4, 435–448.
Granulocyte–macrophage colony stimulating factor (GM-CSF): one of a family of epithelial cell-derived cytokines in the preimplantation uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvFOrtA%3D%3D&md5=7039b4d3076251d28de4b4cd75eed091CAS |

Robertson, S. A., Mau, V. J., Tremellen, K. P., and Seamark, R. F. (1996). Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice. J. Reprod. Fertil. 107, 265–277.
Role of high molecular weight seminal vesicle proteins in eliciting the uterine inflammatory response to semen in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGgtrY%3D&md5=955b63afebef7c2ee6a784e726d6089bCAS |

Robertson, S. A., Mau, V. J., Hudson, S. N., and Tremellen, K. P. (1997). Cytokine–leukocyte networks and the establishment of pregnancy. Am. J. Reprod. Immunol. 37, 438–442.
Cytokine–leukocyte networks and the establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2sznt1Sgtw%3D%3D&md5=a19403245f83e59e63c979c4c9d18e41CAS |

Robertson, S. A., Guerin, L. R., Bromfield, J. J., Branson, K. M., Ahlstrom, A. C., and Care, A. S. (2009). Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol. Reprod. 80, 1036–1045.
Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVajsrc%3D&md5=6df84228f74025414eff521b88c4bf0aCAS |

Robillard, P. Y., Hulsey, T. C., Perianin, J., Janky, E., Miri, E. H., and Papiernik, E. (1994). Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 344, 973–975.
Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FitVWjsQ%3D%3D&md5=ba72e2a581dce48de5d5430f2487cc0cCAS |

Saxena, S., Jha, P., and Farooq, A. (1985). Immunosuppression by human seminal plasma. Immunol. Invest. 14, 255–269.
Immunosuppression by human seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2Fgs12lsg%3D%3D&md5=5354d263995e77dafcb967afaf9b3307CAS |

Schieve, L. A., Meikle, S. F., Ferre, C., Peterson, H. B., Jeng, G., and Wilcox, L. S. (2002). Low and very low birth weight in infants conceived with use of assisted reproductive technology. N. Engl. J. Med. 346, 731–737.
Low and very low birth weight in infants conceived with use of assisted reproductive technology.Crossref | GoogleScholarGoogle Scholar |

Scott, J. L., Ketheesan, N., and Summers, P. M. (2006). Leucocyte population changes in the reproductive tract of the ewe in response to insemination. Reprod. Fertil. Dev. 18, 627–634.
Leucocyte population changes in the reproductive tract of the ewe in response to insemination.Crossref | GoogleScholarGoogle Scholar |

Sharkey, D. J., Macpherson, A. M., Tremellen, K. P., Mottershead, D. G., Gilchrist, R. B., and Robertson, S. A. (2012a). TGF-beta mediates proinflammatory seminal fluid signaling in human cervical epithelial cells. J. Immunol. 189, 1024–1035.
TGF-beta mediates proinflammatory seminal fluid signaling in human cervical epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFensbk%3D&md5=acd24130a940d7dcc97305815cc6c376CAS |

Sharkey, D. J., Tremellen, K. P., Jasper, M. J., Gemzell-Danielsson, K., and Robertson, S. A. (2012b). Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. J. Immunol. 188, 2445–2454.
Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGrt7o%3D&md5=0b0fb5182b610695c45cf13d66d2d94eCAS |

Siqueira, L. G., Tribulo, P., Chen, Z., Denicol, A. C., Ortega, M. S., Negron-Perez, V. M., Kannampuzha-Francis, J., Pohler, K. G., Rivera, R. M., and Hansen, P. J. (2017). Colony-stimulating factor 2 acts from Days 5 to 7 of development to modify programming of the bovine conceptus at Day 86 of gestation. Biol. Reprod. 96, 743–757.
Colony-stimulating factor 2 acts from Days 5 to 7 of development to modify programming of the bovine conceptus at Day 86 of gestation.Crossref | GoogleScholarGoogle Scholar |

Sjöblom, C., Wikland, M., and Robertson, S. A. (1999). Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro. Hum. Reprod. 14, 3069–3076.
Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro.Crossref | GoogleScholarGoogle Scholar |

Sjöblom, C., Roberts, C. T., Wikland, M., and Robertson, S. A. (2005). Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 146, 2142–2153.
Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis.Crossref | GoogleScholarGoogle Scholar |

Tafuri, A., Alferink, J., Moller, P., Hammerling, G. J., and Arnold, B. (1995). T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633.
T cell awareness of paternal alloantigens during pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFGrsrY%3D&md5=4dbf8bbe5034194a44e07aaa35f03053CAS |

Tremellen, K. P., Seamark, R. F., and Robertson, S. A. (1998). Seminal transforming growth factor beta1 stimulates granulocyte–macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol. Reprod. 58, 1217–1225.
Seminal transforming growth factor beta1 stimulates granulocyte–macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFClt7k%3D&md5=c03b9dd6ada0b8715f6d42aa9da51484CAS |

Tremellen, K. P., Valbuena, D., Landeras, J., Ballesteros, A., Martinez, J., Mendoza, S., Norman, R. J., Robertson, S. A., and Simon, C. (2000). The effect of intercourse on pregnancy rates during assisted human reproduction. Hum. Reprod. 15, 2653–2658.
The effect of intercourse on pregnancy rates during assisted human reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWlsw%3D%3D&md5=f41011e751b286b874bfe1369e35cd55CAS |

Vasconcelos, J. L., Jardina, D. T., Sa Filho, O. G., Aragon, F. L., and Veras, M. B. (2011). Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenology 75, 1153–1160.
Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1aqsrY%3D&md5=0c1665e92ca9fb19b3868cb0e5df84deCAS |

Wang, J. X., Norman, R. J., and Kristiansson, P. (2002). The effect of various infertility treatments on the risk of preterm birth. Hum. Reprod. 17, 945–949.
The effect of various infertility treatments on the risk of preterm birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Wnt7g%3D&md5=7e16e06f7d80acdd535ef5335e75d00dCAS |

Wiltbank, M. C., Baez, G. M., Garcia-Guerra, A., Toledo, M. Z., Monteiro, P. L., Melo, L. F., Ochoa, J. C., Santos, J. E., and Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86, 239–253.
Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=d7047e3da0b19430074e70ee6d128f1cCAS |

Ziebe, S., Loft, A., Povlsen, B. B., Erb, K., Agerholm, I., Aasted, M., Gabrielsen, A., Hnida, C., Zobel, D. P., Munding, B., Bendz, S. H., and Robertson, S. A. (2013). A randomized clinical trial to evaluate the effect of granulocyte–macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization. Fertil. Steril. 99, 1600–1609.e2.
A randomized clinical trial to evaluate the effect of granulocyte–macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Khtr0%3D&md5=38ca693ef8c8d39a78bd971e0030790eCAS |