Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

MicroRNA expression in bovine preimplantation embryos

Debra K. Berg A C and Peter L. Pfeffer A B
+ Author Affiliations
- Author Affiliations

A AgResearch Ltd, Ruakura Agricultural Centre, 10 Bisley Road, Hamilton 3214, New Zealand.

B School of Biological Sciences, Victoria University, Wellington 6149, New Zealand.

C Corresponding author. Email: debbie.berg@agresearch.co.nz

Reproduction, Fertility and Development 30(3) 546-554 https://doi.org/10.1071/RD17101
Submitted: 17 March 2017  Accepted: 2 August 2017   Published: 29 August 2017

Abstract

We profiled 98 mature microRNAs (miRNAs) using a stem-loop reverse transcription polymerase chain reaction assay array based on human miRNAs. We demonstrated that one, but not two, base-pair changes in the miRNA recognition sequence at the 3′ end only marginally affected copy number estimates. Absolute levels of miRNAs were measured in matured cattle oocytes, eight-cell embryos and normal and parthenogenetic blastocysts and Day-14 trophoblast. Most miRNA concentrations were below the expected functional threshold required for effective repression of moderately to highly abundant target RNA. In oocytes and peri-embryonic genome activation embryos, miRNA 320, a member of the Dgcr8/Drosha-independent class of miRNAs, was expressed at greater than 1000 copies per embryo. miRNAs were more abundant at the eight-cell than the oocyte stage. miRNA concentrations per cell increased from the eight-cell to the blastocyst stage. Both the number of miRNA species and their expression levels were reduced in trophoblast tissue at Day 14. The parthenogenetic samples were more related in their miRNA expression profiles to each other than to their wild-type (in vitro-produced cultured) counterparts. miRNAs 299 and 323, which have been shown to be maternally expressed in other species, were also more than 4-fold overexpressed in the cattle parthenogenetic samples.

Additional keywords: blastocyst, imprinting, oocyte, parthenote, trophoblast.


References

Abd El Naby, W. S., Hagos, T. H., Hossain, M. M., Salilew-Wondim, D., Gad, A. Y., Rings, F., Cinar, M. U., Tholen, E., Looft, C., Schellander, K., Hoelker, M., and Tesfaye, D. (2013). Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote 21, 31–51.
Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVamtb4%3D&md5=455250148276ced1401d6f3fe99f4f6dCAS |

Abe, K., Inoue, A., Suzuki, M. G., and Aoki, F. (2010). Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes. J. Reprod. Dev. 56, 502–507.
Global gene silencing is caused by the dissociation of RNA polymerase II from DNA in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyhur%2FI&md5=d02c503556c2b0a69e5dd7e740779e57CAS |

Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P., and Blelloch, R. (2008). Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773–2785.
Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12ht73M&md5=0e0b1b3263f0e6582fa0aad8be790444CAS |

Bazzini, A. A., Lee, M. T., and Giraldez, A. J. (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237.
Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1ehs7w%3D&md5=40a60975a83e936a8170bab4437bdbd4CAS |

Berg, D. K., van Leeuwen, J., Beaumont, S., Berg, M., and Pfeffer, P. L. (2010). Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 73, 250–260.
Embryo loss in cattle between Days 7 and 16 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MfhvVWguw%3D%3D&md5=cce5e75b0f97b6b244e505af4f1156daCAS |

Bobbs, A. S., Saarela, A. V., Yatskievych, T. A., and Antin, P. B. (2012). Fibroblast growth factor (FGF) signaling during gastrulation negatively modulates the abundance of microRNAs that regulate proteins required for cell migration and embryo patterning. J. Biol. Chem. 287, 38505–38514.
Fibroblast growth factor (FGF) signaling during gastrulation negatively modulates the abundance of microRNAs that regulate proteins required for cell migration and embryo patterning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ektb3J&md5=0ab7e90e22cb9ba307a65cebbbc5153aCAS |

Braun, J. E., Huntzinger, E., and Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harb. Perspect. Biol. 4, a012328.
A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs.Crossref | GoogleScholarGoogle Scholar |

Brown, B. D., Gentner, B., Cantore, A., Colleoni, S., Amendola, M., Zingale, A., Baccarini, A., Lazzari, G., Galli, C., and Naldini, L. (2007). Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467.
Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSjurrL&md5=fc616daa48558b494872abd574e03a40CAS |

Bustin, S. A. (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193.
Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslKgtb8%3D&md5=00452920bb22e3cc3c62fd1316dee168CAS |

Calabrese, J. M., Starmer, J., Schertzer, M. D., Yee, D., and Magnuson, T. (2015). A survey of imprinted gene expression in mouse trophoblast stem cells. G3 (Bethesda) 5, 751–759.
A survey of imprinted gene expression in mouse trophoblast stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFGqtrzE&md5=1860f9713a7d91cd6a70ac28e2e72556CAS |

Castro, F. O., Sharbati, S., Rodriguez-Alvarez, L. L., Cox, J. F., Hultschig, C., and Einspanier, R. (2010). MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos. Theriogenology 73, 71–85.
MicroRNA expression profiling of elongated cloned and in vitro-fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyntb%2FF&md5=1f8d0f53018c9590e22942468fd43099CAS |

Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T., Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., and Guegler, K. J. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.
Real-time quantification of microRNAs by stem-loop RT-PCR.Crossref | GoogleScholarGoogle Scholar |

Davis, E., Caiment, F., Tordoir, X., Cavaille, J., Ferguson-Smith, A., Cockett, N., Georges, M., and Charlier, C. (2005). RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol. 15, 743–749.
RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFKiu7c%3D&md5=d318e3bb45943384038c0aecc9e03959CAS |

Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.
Processing of primary microRNAs by the Microprocessor complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsF2gtrY%3D&md5=808c3d54c2f0f025c036eb57624bea49CAS |

Donnison, M., and Pfeffer, P. L. (2004). Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development. Biol. Reprod. 71, 1813–1821.
Isolation of genes associated with developmentally competent bovine oocytes and quantitation of their levels during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsr%2FL&md5=3523d30e27ef827620a6acae6918ee70CAS |

Ebert, M. S., and Sharp, P. A. (2012). Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524.
Roles for microRNAs in conferring robustness to biological processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Grtb0%3D&md5=7fd60054f0c2ff565bf78405a1dcf3b3CAS |

Feng, R., Sang, Q., Zhu, Y., Fu, W., Liu, M., Xu, Y., Shi, H., Xu, Y., Qu, R., Chai, R., Shao, R., Jin, L., He, L., Sun, X., and Wang, L. (2015). MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci. Rep. 5, 8689.
MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKhtbvL&md5=62d07b2111ed6f6cc6131c401b68af2cCAS |

Filipowicz, W. (2005). RNAi: the nuts and bolts of the RISC machine. Cell 122, 17–20.
RNAi: the nuts and bolts of the RISC machine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsFeitbo%3D&md5=e3e1766e19501f7c0961bd83f6740bfeCAS |

Friedman, R. C., Farh, K. K. H., Burge, C. B., and Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.
Most mammalian mRNAs are conserved targets of microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFWjuw%3D%3D&md5=9813611d043a846556e22f531a650c05CAS |

Girardot, M., Cavaille, J., and Feil, R. (2012). Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease. Epigenetics 7, 1341–1348.
Small regulatory RNAs controlled by genomic imprinting and their contribution to human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVSrt7o%3D&md5=d381d6729035f04487ce225dd9c51372CAS |

Goossens, K., Mestdagh, P., Lefever, S., Van Poucke, M., Van Zeveren, A., Van Soom, A., Vandesompele, J., and Peelman, L. (2013). Regulatory microRNA network identification in bovine blastocyst development. Stem Cells Dev. 22, 1907–1920.
Regulatory microRNA network identification in bovine blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslCiu7Y%3D&md5=f0a3af8d6664636aaca622fdb56eba5fCAS |

Graf, A., Krebs, S., Heininen-Brown, M., Zakhartchenko, V., Blum, H., and Wolf, E. (2014). Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim. Reprod. Sci. 149, 46–58.
Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVymu7bF&md5=2197dea1d6d9bcc475c183b08870d022CAS |

Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110.
Gene silencing by microRNAs: contributions of translational repression and mRNA decay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVelsw%3D%3D&md5=17f198fd804f1114eef35e0c23fe98a2CAS |

Hutvágner, G., McLachlan, J., Pasquinelli, A. E., Bálint, E., Tuschl, T., and Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.
A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA.Crossref | GoogleScholarGoogle Scholar |

Latham, K. E. (1999). Mechanisms and control of embryonic genome activation in mammalian embryos. Int. Rev. Cytol. 193, 71–124.
Mechanisms and control of embryonic genome activation in mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVSlsA%3D%3D&md5=de7bf7f101c0da709cfe5b4dea0a2e3dCAS |

Mondou, E., Dufort, I., Gohin, M., Fournier, E., and Sirard, M. A. (2012). Analysis of microRNAs and their precursors in bovine early embryonic development. Mol. Hum. Reprod. 18, 425–434.
Analysis of microRNAs and their precursors in bovine early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlWmur3L&md5=9098b95bffc9ad84989d52e04b632d33CAS |

Mukherji, S., Ebert, M. S., Zheng, G. X., Tsang, J. S., Sharp, P. A., and van Oudenaarden, A. (2011). MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43, 854–859.
MicroRNAs can generate thresholds in target gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGksr%2FN&md5=af3f767b5a33e9ece7737189910e2916CAS |

Murchison, E. P., Partridge, J. F., Tam, O. H., Cheloufi, S., and Hannon, G. J. (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA 102, 12135–12140.
Characterization of Dicer-deficient murine embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1yqsrk%3D&md5=aae8c7a159194c14a8ad36f62bfa630bCAS |

Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., and Hannon, G. J. (2007). Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693.
Critical roles for Dicer in the female germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WqsbY%3D&md5=ec0372ecbcf37f287602c5f47ff61073CAS |

Oback, B., and Wells, D. N. (2003). Cloning cattle. Cloning Stem Cells 5, 243–256.
Cloning cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislaqtA%3D%3D&md5=abe14fecf249765006fcc67f29ae70f5CAS |

Ramakers, C., Ruijter, J. M., Deprez, R. H., and Moorman, A. F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339, 62–66.
Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1Kks70%3D&md5=826b69327963ea41db6cd141a10ae5e0CAS |

Robertson, I., and Nelson, R. (1998). Certification and identification of the embryo. In: ‘Manual of the International Embryo Transfer Society’. (Eds. D.A. Stringfellow and S. M. Seidel.) pp. 103–134. (International Embryo Transfer Society: Savoy, IL.)

Rosenbluth, E. M., Shelton, D. N., Sparks, A. E., Devor, E., Christenson, L., and Van Voorhis, B. J. (2013). MicroRNA expression in the human blastocyst. Fertil. Steril. 99, 855–861e3.
MicroRNA expression in the human blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslynurvL&md5=87bf628e547a29062cdbdc3381da446aCAS |

Seitz, H., Royo, H., Bortolin, M. L., Lin, S. P., Ferguson-Smith, A. C., and Cavaille, J. (2004). A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 14, 1741–1748.
A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFGjsbo%3D&md5=b67d0dba6469edc7fd66f1a88a7ea31fCAS |

Smith, C., Berg, D., Beaumont, S., Standley, N. T., Wells, D. N., and Pfeffer, P. L. (2007). Simultaneous gene quantitation of multiple genes in individual bovine nuclear transfer blastocysts. Reproduction 133, 231–242.
Simultaneous gene quantitation of multiple genes in individual bovine nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aisrs%3D&md5=77e36a6f172c0a53374f3078360eea9bCAS |

Stowe, H. M., Curry, E., Calcatera, S. M., Krisher, R. L., Paczkowski, M., and Pratt, S. L. (2012). Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on microRNA expression in porcine embryos. Gene 501, 198–205.
Cloning and expression of porcine Dicer and the impact of developmental stage and culture conditions on microRNA expression in porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1Grtrs%3D&md5=4a917759d887a39239ec8451323244c0CAS |

Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H., and Bartel, D. P. (2014). Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71.
Poly(A)-tail profiling reveals an embryonic switch in translational control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsFyiurg%3D&md5=ee4130e5de54793f41a56b4ef2426e05CAS |

Suh, N., Baehner, L., Moltzahn, F., Melton, C., Shenoy, A., Chen, J., and Blelloch, R. (2010). MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277.
MicroRNA function is globally suppressed in mouse oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslSmurc%3D&md5=4843abb563228780190d10aa72ddacfaCAS |

Tang, F., Kaneda, M., O’Carroll, D., Hajkova, P., Barton, S. C., Sun, Y. A., Lee, C., Tarakhovsky, A., Lao, K., and Surani, M. A. (2007). Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 21, 644–648.
Maternal microRNAs are essential for mouse zygotic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1Wqsbo%3D&md5=e57024560755971541c04da28becd6bfCAS |

Telford, N. A., Watson, A. J., and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
Transition from maternal to embryonic control in early mammalian development: a comparison of several species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3mslOhtQ%3D%3D&md5=ee309600372fcb094d3f5d9cda8cc093CAS |

Tesfaye, D., Worku, D., Rings, F., Phatsara, C., Tholen, E., Schellander, K., and Hoelker, M. (2009). Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol. Reprod. Dev. 76, 665–677.
Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVaisLo%3D&md5=ba011259a4b3fd45569d1719d1f687e4CAS |

Thompson, J. G., McNaughton, C., Gasparrini, B., McGowan, L. T., and Tervit, H. R. (2000). Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J. Reprod. Fertil. 118, 47–55.
| 1:CAS:528:DC%2BD3cXpsl2guw%3D%3D&md5=53f067ccdad03947518f75ad65a9c63cCAS |

Tripurani, S. K., Lee, K. B., Wee, G., Smith, G. W., and Yao, J. (2011). MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis. BMC Dev. Biol. 11, 25.
MicroRNA-196a regulates bovine newborn ovary homeobox gene (NOBOX) expression during early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtFKitLg%3D&md5=6b933b7bf416ca60e7815f84ac25ae51CAS |

Yang, C. X., Du, Z. Q., Wright, E. C., Rothschild, M. F., Prather, R. S., and Ross, J. W. (2012). Small RNA profile of the cumulus–oocyte complex and early embryos in the pig. Biol. Reprod. 87, 117.
Small RNA profile of the cumulus–oocyte complex and early embryos in the pig.Crossref | GoogleScholarGoogle Scholar |