Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Caprine arthritis encephalitis: an example of risk assessment for embryo trading

Francis Fieni A B , Ali Lamara A , Mohamad Zuher Ali Al Ahmad A , Cesar Cortez-Romero A and Jean- Louis Pellerin A
+ Author Affiliations
- Author Affiliations

A L’Université Nantes Angers Le Mans (L’UNAM), Oniris, Nantes-Atlantic National College of Veterinary Medicine, Food Science and Engineering, Sanitary Security of Reproduction Biotechnology Unit, Nantes, BP 40706, 44307 Nantes CEDEX 03, France.

B Corresponding author. Email: francis.fieni@oniris-nantes.fr

Reproduction, Fertility and Development 29(1) 37-51 https://doi.org/10.1071/RD16358
Published: 2 December 2016

Abstract

The risk of transmission of caprine arthritis encephalitis virus (CAEV) during embryo transfer has been demonstrated in vivo through the detection of CAEV proviral DNA in: (1) flushing media for embryo collection; (2) cells of the cumulus oophorus surrounding the oocytes, ovarian follicle, oviduct and uterine tissues; and (3) testis, epididymis, vas deferens and vesicular glands. Experimentally infected embryos without a zona pellucida (ZP), washed 10 times with Minimum Essential Media (MEM) and 5% Fetal Calf Serum (FCS) solution, were capable of transmitting CAEV. In vitro we demonstrated that granulosa, oviductal, epididymal and embryo cells are fully susceptible to CAEV infection and allow active replication. However, AI with in vitro-infected semen can result in the production, after ten washing, of CAEV-free embryos, and ten washing in vitro- or in vivo-infected embryos with an intact ZP, or ten washing oocytes with an intact ZP, resulted in the production of virus-free female gametes or embryos that can be used for IVF or embryo transfer. Therefore, we have demonstrated that: (1) that CAEV-free embryos can be produced by IVF using spermatozoa infected in vitro by CAEV; and (2) embryo transfer can be used under field conditions to produce CAEV-free kids from CAEV-infected biological mothers.

Additional keywords: AI, caprine arthritis encephalitis virus (CAEV), embryo transfer, IVF, oocytes, spermatozoa.


References

Adams, D. S., Kleyjer-Anderson, P., Carlson, J. L., McGuire, T. C., and Gorham, J. R. (1983). Transmission and control of caprine arthritis-encephalitis virus. Am. J. Vet. Res. 44, 1670–1675.
| 1:STN:280:DyaL2c%2Fit1ShtA%3D%3D&md5=3092e7267c8aab6c70224f6fbac95e2aCAS |

Adams, D. S., Oliver, R. E., Ameghino, E., De Martini, J. C., Verwoerd, D. W., Houwers, D. J., Waghela, S., Gorham, J. R., Hyllseth, B., Dawson, M., Trigo, F. J., and MeGuire, T. C. (1984). Global survey of serological evidence of caprine arthritis-encephalitis virus infection. Vet. Rec. 115, 493–495.
Global survey of serological evidence of caprine arthritis-encephalitis virus infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fpt1anuw%3D%3D&md5=d51a4cb0e6cc29f6215ad3a02bac9e07CAS |

Ali Al Ahmad, M. Z., Fieni, F., Martignat, L., Chatagnon, G., Baril, G., Bouvier, F., and Chebloune, Y. (2005). Proviral DNA of caprine arthritis encephalitis virus (CAEV) is detected in cumulus oophorus cells but not in oocytes from naturally infected goats. Theriogenology 64, 1656–1666.
Proviral DNA of caprine arthritis encephalitis virus (CAEV) is detected in cumulus oophorus cells but not in oocytes from naturally infected goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVartrbI&md5=701be4cacfe7d26645703f1450aeb6d9CAS |

Ali Al Ahmad, M. Z., Fieni, F., Guiguen, F., Larrat, M., Pellerin, J. L., Roux, C., and Chebloune, Y. (2006). Cultured goat embryos and cells are susceptible to infection with caprine encephalitis virus. Virology 353, 307–315.
Cultured goat embryos and cells are susceptible to infection with caprine encephalitis virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvV2murk%3D&md5=91bdea48fb2523dcf2ba8a9de854effcCAS |

Ali Al Ahmad, M. Z., Chebloune, Y., Bouzar, B. A., Baril, G., Bouvier, F., Chatagnon, G., Leboeuf, B., Pepin, M., Guibert, J. M., Russo, P., Manfredi, E., Martin, J., and Fieni, F. (2008a). Lack of risk of transmission of caprine arthritis-encephalitis virus (CAEV) during embryo transfer. Theriogenology 69, 408–415.
Lack of risk of transmission of caprine arthritis-encephalitis virus (CAEV) during embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FovVygtQ%3D%3D&md5=5f57ae321a057937b34f50f7ac6d5833CAS |

Ali Al Ahmad, M. Z., Fieni, F., Pellerin, J. L., Guigen, F., Cherel, Y., Chatagnon, G., Bouzar, B. A., and Chebloune, Y. (2008b). Detection of viral genomes of caprine arthritis-encephalitis virus (CAEV) in semen and in genital tract tissues of male goat. Theriogenology 69, 473–480.
Detection of viral genomes of caprine arthritis-encephalitis virus (CAEV) in semen and in genital tract tissues of male goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSmsrY%3D&md5=a6f29f49dd3da037f5e5af44b0160377CAS |

Ali Al Ahmad, M. Z., Dubreil, L., Chatagnon, G., Khayli, Z., Theret, M., Martignat, L., Chebloune, Y., and Fieni, F. (2012a). Goat uterine epithelial cells are susceptible to infection with caprine arthritis encephalitis virus (CAEV) in vivo. Vet. Res. 43, 5.
Goat uterine epithelial cells are susceptible to infection with caprine arthritis encephalitis virus (CAEV) in vivo.Crossref | GoogleScholarGoogle Scholar |

Ali Al Ahmad, M. Z., Chebloune, Y., Chatagnon, G., Pellerin, J. L., and Fieni, F. (2012b). Is caprine arthritis encephalitis virus (CAEV) transmitted vertically to early embryo development stages (morulae or blastocyst) via in vitro infected frozen semen? Theriogenology 77, 1673–1678.
Is caprine arthritis encephalitis virus (CAEV) transmitted vertically to early embryo development stages (morulae or blastocyst) via in vitro infected frozen semen?Crossref | GoogleScholarGoogle Scholar |

Apelo, C. L., and Kanagawa, H. (1989). Pathogens associated with mammalian embryo. A review. Jpn. J. Vet. Res. 37, 49–69.
| 1:STN:280:DyaL1MzotlSltA%3D%3D&md5=5d9577cfa7d6f5a2137a8af179e7bedcCAS |

Atwell, J. K. (1987). The international movement of embryos and disease control: a regulatory perspective. Theriogenology 27, 5–8.
The international movement of embryos and disease control: a regulatory perspective.Crossref | GoogleScholarGoogle Scholar |

Barnes, F. L., and First, N. L. (1991). Embryonic transcription in in vitro cultured bovine embryos. Mol. Reprod. Dev. 29, 117–123.
Embryonic transcription in in vitro cultured bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFWhurs%3D&md5=027e04fbc879d77e99ab5b40807cf509CAS |

Blacklaws, B. A. (2012). Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus. Comp. Immunol. Microbiol. Infect. Dis. 35, 259–269.
Small ruminant lentiviruses: immunopathogenesis of visna-maedi and caprine arthritis and encephalitis virus.Crossref | GoogleScholarGoogle Scholar |

Blacklaws, B. A., Berriatua, E., Torsteinsdottir, S., Watt, N. J., de Andres, D., Klein, D., and Harkiss, G. D. (2004). Transmission of small ruminant lentiviruses. Vet. Microbiol. 101, 199–208.
Transmission of small ruminant lentiviruses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czit1GhtQ%3D%3D&md5=180501e351bcbe21c8e3cac5beedef2cCAS |

Bolin, S. R., Turek, J. J., Runnels, L. J., and Gustafson, D. P. (1983). Pseudorabies virus, porcine parvovirus, and porcine enterovirus interactions with the zona pellucida of the porcine embryo. Am. J. Vet. Res. 44, 1036–1039.
| 1:STN:280:DyaL3s3lsVWmsg%3D%3D&md5=f3f258437f41824587f28e0b6c4c8fe6CAS |

Brodie, S. J., Pearson, L. D., Zink, M. C., Bickle, H. M., Anderson, B. C., Marcom, K. A., and DeMartini, J. C. (1995). Ovine lentivirus expression and disease. Virus replication, but not entry, is restricted to macrophages of specific tissues. Am. J. Pathol. 146, 250–263.
| 1:STN:280:DyaK2M7mtVWitg%3D%3D&md5=bf4dd1ff0f8d99f4152b720f2baa1358CAS |

Cavalcante, T. V., Salles, H. O., and Freitas, V. J. F. (1998). Ovulatory response and embryo production after superovulatory treatment in goats seropositive for caprine arthritis-encephalitis virus (CAEV): preliminary results. In ‘Proceeding of the 14th meeting of European Embryo transfer Association’, 11–12 September 1998, Venice. (Ed. AETE.) pp 136. . (AETE: Paris.)

Cheevers, W. P., Knowles, D. P., Mcguire, T. C., Cunningham, D. R., Adams, D. S., and Gorham, J. R. (1988). Chronic disease in goats orally infected with two isolates of the caprine arthritis-encephalitis lentivirus. Lab. Invest. 58, 510–517.
| 1:STN:280:DyaL1c3hsFGisw%3D%3D&md5=e77e2e35627224550e212d1d34984b5bCAS |

Clements, J. E., and Zink, M. C. (1996). Molecular biology and pathogenesis of animal Lentivirus infection. Clin. Microbiol. Rev. 9, 100–117.
| 1:CAS:528:DyaK28XhtFyksLc%3D&md5=94d09cf2c31ee717f27c456e0801e845CAS |

Cork, L. C., Hadlow, W. J., Crawford, T. B., Gorham, J. R., and Piper, R. C. (1974). Infectious leukoencephalomyelitis of young goats. J. Infect. Dis. 129, 134–141.
Infectious leukoencephalomyelitis of young goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2Fos1alsQ%3D%3D&md5=054a621e5620a84a3d7dcca695f8c985CAS |

Cortez-Romero, C., Pellerin, J. L., Ali-Al-Ahmad, M. Z., Chebloune, Y., Gallegos-Sánchez, J., Lamara, A., Pépin, M., and Fieni, F. (2013). The risk of small ruminant lentivirus (SRLV) transmission with reproductive biotechnologies: state-of-the-art review. Theriogenology 79, 1–9.
The risk of small ruminant lentivirus (SRLV) transmission with reproductive biotechnologies: state-of-the-art review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7htlymug%3D%3D&md5=85b00d5c1dc97d4500d88c69a9a15e7fCAS |

Crawford, T. B., and Adams, D. S. (1981). Caprine arthritis-encephalitis: clinical features and presence of antibody in selected goat populations. J. Am. Vet. Med. Assoc. 178, 713–719.
| 1:STN:280:DyaL3M7ktF2gsQ%3D%3D&md5=d8ebc3b7ef44f84efd9b72d46982af36CAS |

Crosby, I. M., Osborn, J. C., and Moor, R. M. (1981). Follicle cell regulation of protein synthesis and developmental competence in sheep oocytes. J. Reprod. Fertil. 62, 575–582.
Follicle cell regulation of protein synthesis and developmental competence in sheep oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFGht7c%3D&md5=f8a5384b34b1d81789a50de61462302cCAS |

Crosby, I. M., Gandolfi, F., and Moor, R. M. (1988). Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fertil. 82, 769–775.
Control of protein synthesis during early cleavage of sheep embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Ght78%3D&md5=0a637bfb65211c7d382a16ca46bdc069CAS |

Crozet, N., Ahmed-Ali, M., and Dubos, M. P. (1995). Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. J. Reprod. Fertil. 103, 293–298.
Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvV2rtLg%3D&md5=fcede29c9c05e26ec7bd368cfce928e1CAS |

Cruz, J. C. M., Gouveia, A. M. G., Souza, K. C., Braz, G. F., Teixeira, B. M., Heinemann, M. B., Leite, R. C., Reis, J. K. P., Pinheiro, R. R., and Andrioli, A. (2009). Caprine arthritis-encephalitis virus (CAEV) detection in semen of endangered goat breeds by nested polymerase chain reaction. Small Rumin. Res. 85, 149–152.
Caprine arthritis-encephalitis virus (CAEV) detection in semen of endangered goat breeds by nested polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar |

Dawson, M. (1988). Lentivirus diseases of domesticated animals. J. Comp. Pathol. 99, 401–419.
Lentivirus diseases of domesticated animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FnvFyrtA%3D%3D&md5=612101dc7ffe9a0c7f2b1b92bff67122CAS |

de Sousa, V. R., das Chagas Araújo Sousa, F., da Silva Filho, O. F., Grassi Rici, R. E., das Neves Diniz, A., da Silva Moura, L., de Jesus Rosa Pereira Alves, J., de Sousa Júnior, A., Angélica Miglino, M., de Sousa, J. M., de Jesus Moraes Junior, F., and Ribeiro Alves, F. (2014). Comparative study by computed radiography, histology, and scanning electron microscopy of the articular cartilage of normal goats and in chronic infection with caprine arthritis-encephalitis virus. Microsc. Res. Tech. 77, 11–16.
Comparative study by computed radiography, histology, and scanning electron microscopy of the articular cartilage of normal goats and in chronic infection with caprine arthritis-encephalitis virus.Crossref | GoogleScholarGoogle Scholar |

East, N. E., Rowe, J. D., and Madewell, B. R. (1987). Serologic prevalence of CAEV in California goat dames. J. Am. Vet. Med. Assoc. 190, 182–186.
| 1:STN:280:DyaL2s7js12hsA%3D%3D&md5=c0bf3070ad5a39ef9c1d832df80b6b85CAS |

East, N. E., Rowe, J. D., Dahlberg, J. E., Theilen, G. H., and Pedersen, N. C. (1993). Modes of transmission of caprine arthritis-encephalitis virus infection. Small Rumin. Res. 10, 251–262.
Modes of transmission of caprine arthritis-encephalitis virus infection.Crossref | GoogleScholarGoogle Scholar |

Fieni, F., Rowe, J., Van Hoosear, K., Burucoa, C., Oppenheim, S., Anderson, G., Murray, J., and Bondurant, R. (2002). Presence of caprine arthritis-encephalitis virus (CAEV) infected cells in flushing media following oviductal-stage embryo collection. Theriogenology 57, 931–940.
Presence of caprine arthritis-encephalitis virus (CAEV) infected cells in flushing media following oviductal-stage embryo collection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383ltFWrsw%3D%3D&md5=c3efa5929f900395b1a7efa7c3338327CAS |

Fieni, F., Rowe, J., Van Hoosear, K., Burucoa, C., Oppenheim, S., Anderson, G., Murray, J., and Bondurant, R. (2003). Presence of caprine arthritis-encephalitis virus (CAEV) proviral DNA in genital tract tissues of superovulated dairy goat does. Theriogenology 59, 1515–1523.
Presence of caprine arthritis-encephalitis virus (CAEV) proviral DNA in genital tract tissues of superovulated dairy goat does.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFWmug%3D%3D&md5=ea00fcb7a762c2295743717579ec1b96CAS |

Fieni, F., Pellerin, J. L., Roux, C., Poulin, N., Baril, G., Fatet, A., Valas, S., Chatagnon, G., Mermillod, P., and Guignot, F. (2012). Can caprine arthritis encephalitis virus (CAEV) be transmitted by in vitro fertilization with experimentally infected sperm? Theriogenology 77, 644–651.
Can caprine arthritis encephalitis virus (CAEV) be transmitted by in vitro fertilization with experimentally infected sperm?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387ktlGguw%3D%3D&md5=11dcf138d2d8e45ecc252b436b22b4c6CAS |

Galli, C., and Moor, R. M. (1991). Developmental of immature bovine oocytes into viable embryos in vitro. Bull. Assoc. Anat. (Nancy) 75, 67–71.
| 1:STN:280:DyaK387ksFSqsw%3D%3D&md5=86e17515fe0b4bd1bde4d31d33dc6e18CAS |

Gendelman, H. E., Narayan, O., Molineaux, S., Clements, J. E., and Ghotbi, Z. (1985). Slow, persistent replication of lentivirus: role of tissue macrophages and macrophage precursors in bone marrow. Proc. Natl Acad. Sci. USA 82, 7086–7090.
Slow, persistent replication of lentivirus: role of tissue macrophages and macrophage precursors in bone marrow.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2Fhs1ynsg%3D%3D&md5=aefc0c7cbecd7e6aad322d4ef6a009b4CAS |

Gorrell, M. D., Brandon, M. R., Sheffer, D., Adams, R. J., and Narayan, O. (1992). Ovine lentivirus is macrophagetropic and does not replicate productively in T lymphocytes. J. Virol. 66, 2679–2688.
| 1:STN:280:DyaK383hvFemsg%3D%3D&md5=f835f383f16e5a3171c1fe08ed3476d3CAS |

Greenwood, P. L. (1995). Effects of arthritis-encephalitis virus on productivity and health of dairy goats in New South Wales, Australia. Prev. Vet. Med. 22, 71–87.
Effects of arthritis-encephalitis virus on productivity and health of dairy goats in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Guiguen, F., Lerondelle, C., and Favier, C. (1990). Responses of kids to monocytes infected in vitro by the caprine arthritis-encephalitis virus. Ann. Rech. Vet. 21, 179–185.
| 1:STN:280:DyaK3czlvVCktg%3D%3D&md5=231d724fb5400ad5dcc1e641d4676d99CAS |

Kato, S., Hanabusa, H., Kaneko, S., Takakuwa, K., Suzuki, M., Kuji, N., Jinno, M., Tanaka, R., Kojima, K., Iwashita, M., Yoshimura, Y., and Tanaka, K. (2006). Complete removal of HIV-1 RNA and proviral DNA from semen by the swim-up method: assisted reproduction technique using spermatozoa free from HIV-1. AIDS 20, 967–973.
Complete removal of HIV-1 RNA and proviral DNA from semen by the swim-up method: assisted reproduction technique using spermatozoa free from HIV-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlCjsb8%3D&md5=5ace7cd06bb3f571ffcd46ffd4b7de1dCAS |

Kelk, D. A., Gartley, C. J., and King, W. A. (1994). Incorporation of 3H-uridine into goat sheep and hybrid embryos. J. Reprod. Fertil. 13, 120.

Knowles, D. P. (1997). Laboratory diagnostic tests for retrovirus infections of small ruminants. Vet. Clin. North Am. Food Anim. Pract. 13, 1–11.
Laboratory diagnostic tests for retrovirus infections of small ruminants.Crossref | GoogleScholarGoogle Scholar |

Lamara, A., Fieni, F., Mselli-Lakhal, L., Tainturier, D., and Chebloune, Y. (2001). Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells. Virus Res. 79, 165–172.
Efficient replication of caprine arthritis-encephalitis virus in goat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsleitbs%3D&md5=88cdcca3a1fe38647b1be71eda51eb9dCAS |

Lamara, A., Fieni, F., Mselli-Lakhal, L., Tainturier, D., and Chebloune, Y. (2002a). Epithelial cells from goat oviduct are highly permissive for productive infection with caprine arthritis-encephalitis virus (CAEV). Virus Res. 87, 69–77.
Epithelial cells from goat oviduct are highly permissive for productive infection with caprine arthritis-encephalitis virus (CAEV).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Wlt7Y%3D&md5=25f9acbcc290a7753d859a79c47e8528CAS |

Lamara, A., Fieni, F., Mselli-Lakhal, L., Chatagnon, G., Bruyas, J. F., Tainturier, D., Battut, I., Fornazero, C., and Chebloune, Y. (2002b). Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV). Theriogenology 58, 1153–1163.
Early embryonic cells from in vivo-produced goat embryos transmit the caprine arthritis-encephalitis virus (CAEV).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vnvFehsA%3D%3D&md5=aaf7f629bc21b844db8bf16e1f43b4edCAS |

Lamara, A., Fieni, F., Chatagnon, G., Larrat, M., Dubreil, L., and Chebloune, Y. (2013). Caprine arthritis encephalitis virus (CAEV) replicates productively in culturedepididymal cells from goats. Comp. Immunol. Microbiol. Infect. Dis. 36, 397–404.

Leitner, G., Krifucks, O., Weisblit, L., Lavi, Y., Bernstein, S., and Merin, U. (2010). The effect of caprine arthritis encephalitis virus infection on production in goats. Vet J. 183, 328–331.
The effect of caprine arthritis encephalitis virus infection on production in goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c7ktVCrsA%3D%3D&md5=53b4b0595da7662859f64101f802f8f6CAS |

Lerondelle, C., Greenland, T., Jane, M., and Mornex, J. F. (1995). Infection of lactating goats by mammary instillation of cell-borne caprine arthritis-encephalitis virus. J. Dairy Sci. 78, 850.
Infection of lactating goats by mammary instillation of cell-borne caprine arthritis-encephalitis virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1CksLo%3D&md5=7b94cdf3227bf2106e3fc53b6ce828a0CAS |

MacKenzie, R. W., Olivier, R. E., and Rooney, J. P. (1987). A successful attempt to raise goat kids free of infection with caprine arthritis-encephalitis virus in an endemically infected goat herd. N. Z. Vet. J. 35, 184–186.
A successful attempt to raise goat kids free of infection with caprine arthritis-encephalitis virus in an endemically infected goat herd.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzntlamuw%3D%3D&md5=0a94153d8e19b965a8d7f3c7fd19585eCAS |

Martínez-Navalón, B., Peris, C., Gómez, E. A., Peris, B., Roche, M. L., Caballero, C., Goyena, E., and Berriatua, E. (2013). Quantitative estimation of the impact of caprine arthritis encephalitis virus infection on milk production by dairy goats. Vet. J. 197, 311–317.
Quantitative estimation of the impact of caprine arthritis encephalitis virus infection on milk production by dairy goats.Crossref | GoogleScholarGoogle Scholar |

Martino, A., Mogars, T., Palmo, M. J., and Paramio, M. T. (1995). In vitro maturation and fertilization of prepubertal goat oocytes. Theriogenology 43, 473–485.
In vitro maturation and fertilization of prepubertal goat oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVeqtA%3D%3D&md5=88afd355ff89b89e507801580ea273c7CAS |

Mselli-Lakhal, L., Favier, C., Da Silva Teixeira, M. F., Chettab, K., Legras, C., Ronfort, C., Verdier, G., Mornex, J. F., and Chebloune, Y. (1998). Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch. Virol. 143, 681–695.
Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt12gsLo%3D&md5=71705c8b12aa93a475174098ec28097eCAS |

Mselli-Lakhal, L., Guiguen, F., Fornazero, C., Jian, D., Favier, C., Durand, J., Grezel, D., Balleydier, S., Mornex, J. F., and Chebloune, Y. (1999). Goat milk epithelial cells are highly permissive to CAEV infection in vitro. Virology 259, 67–73.
Goat milk epithelial cells are highly permissive to CAEV infection in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Gms7k%3D&md5=3d97de00fbde77692fef782392b50bdcCAS |

Mselli-Lakhal, L., Colette, F., Leung, K., Guiguen, F., Grezel, D., Mornex, J. F., Narayan, O., Quérat, G., and Chebloune, Y. (2000). Lack of functional receptors is the only barrier that prevents CAEV from infecting human cells. J. Virol. 74, 8343–8348.
Lack of functional receptors is the only barrier that prevents CAEV from infecting human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVansLo%3D&md5=4dbdbcb7df37e6b67e72bdbde61ef57aCAS |

Narayan, O., and Cork, L. C. (1995). Caprine arthritis-encephalitis virus: In ‘The Retroviridae’. (Ed. J. A. Levy.) pp. 441–451. (Plenum Press: New York.)

Narayan, O., Wolinsky, J. S., Clements, J. E., Strandberg, J. D., Griffin, D. E., and Cork, L. C. (1982). Slow viruses replication: the role of macrophages in the persistence and expression of visna viruses of sheep and goat. J. Gen. Virol. 59, 345–356.
Slow viruses replication: the role of macrophages in the persistence and expression of visna viruses of sheep and goat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ptFKjug%3D%3D&md5=5942cb2fe5b07ddf32df36286f17e2a9CAS |

Narayan, O., Kennedy-Stoskopf, S., Sheffer, D., Griffin, D. E., and Clements, J. E. (1983). Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages. Infect. Immun. 41, 67–73.
| 1:STN:280:DyaL3s3js12gtA%3D%3D&md5=1d18a092ba6372762a1c5a9cdee20253CAS |

Narayan, O., Zink, M., Gorrell, S., Crane, D., Huso, P., Jolly, P., Saltarelli, R., Adams, R., and Clements, J. (1993). The lentiviruses of sheep and goats. In ‘The Retroviridae’. (Ed. J. A. Levy.) pp. 229–256. (Plenum Press: New York.)

Office International des Epizooties (OIE) (2016). ‘Terrestrial Animal Health Code.’ (OIE: Paris.) Available at http://www.oie.int/fr/normes-internationales/code-terrestre/ [verified 1 August 2016].

Payne, S. L., and Elder, J. H. (2001). The role of retroviral dUTPases in replication and virulence. Curr. Protein Pept. Sci. 2, 381–388.
The role of retroviral dUTPases in replication and virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptlOhsrc%3D&md5=dcc5400ffc36cd29b2931974774ccf03CAS |

Peretz, G., and Cimarosti, I. (1990). Conséquences de l’arthrite encéphalite caprine sur la -production laitière. In ‘Résumés de la 41e réunion de la Fédération Européenne de Zootechnie, Volume 2, 9–12 July 1990, Toulouse. (Ed. FEZ) pp. 164–165. (FEZ: Rome.)

Péretz, G., Bugnard, F., and Calavas, D. (1994). Study of a prevention program for caprine arthritis-encephalitis. Vet. Res. 25, 322.

Peterson, K., Brinkhof, J., Houwers, D. J., Colenbrander, B., and Gadella, B. M. (2008). Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants. Theriogenology 69, 433–442.
Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSmsrg%3D&md5=bec8b2c9fbd80f4db339404e4af961f1CAS |

Phelps, S. L., and Smith, M. C. (1993). Caprine arthritis-encephalitis virus infection. J. Am. Vet. Med. Assoc. 203, 1663–1666.
| 1:STN:280:DyaK2c7ktVKntA%3D%3D&md5=489159e49d7aac5f2d9b35330469a289CAS |

Philpott, M. (1993). The danger of disease transmission by artificial insemination and embryo transfer. Br. Vet. J. 149, 339–369.
The danger of disease transmission by artificial insemination and embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2Fjs1Sltg%3D%3D&md5=b4f397bb8122c25d33cbd3c6561c5b0aCAS |

Prichard, J. F., Thibodeaux, J. K., Pool, S. H., Blakewood, E. G., Ménézo, Y., and Godke, R. A. (1992). In vitro co-culture of early stage caprine embryos with oviduct and uterine epithelial cells. Hum. Reprod. 7, 553–557.
| 1:STN:280:DyaK38zpsFWjtw%3D%3D&md5=bb39fca0ba20203bfaf235c20744b581CAS |

Pudney, J., Nguyen, H., Xu, C., and Anderson, D. J. (1999). Microscopic evidence against HIV-1 infection of germ cells or attachment to sperm. J. Reprod. Immunol. 44, 57–77.
Microscopic evidence against HIV-1 infection of germ cells or attachment to sperm.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvlvVentg%3D%3D&md5=63ac084fe50753c10d12ab0cfd583401CAS |

Pugh, P. A., Fukui, Y., Tervit, H. R., and Thompson, J. G. (1991). Developmental ability of in vitro matured sheep oocytes collected during the non breeding season and fertilized in vitro with frozen ram semen. Theriogenology 36, 771–778.
Developmental ability of in vitro matured sheep oocytes collected during the non breeding season and fertilized in vitro with frozen ram semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFyjug%3D%3D&md5=a204da0f84fba6e3c52ad622089386deCAS |

Quayle, A. J., Xu, C., Mayer, K. H., and Anderson, D. J. (1997). T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J. Infect. Dis. 176, 960–968.
T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svnt1ehuw%3D%3D&md5=1e8cf96d50f2a23f5661bfec546e3a08CAS |

Rimstad, E., East, N. E., Torten, M., Hinggins, J., DeRock, E., and Pederson, N. C. (1993). Delayed seroconversion following naturally acquired caprine arthritis-encephalitis virus infection in goats. Am. J. Vet. Res. 54, 1858–1862.
| 1:STN:280:DyaK2c7itFegsA%3D%3D&md5=48e6c1187465da5d04f842db51d12664CAS |

Rowe, J. D., and East, N. E. (1997). Risk factors for transmission and methods for control of CAEV infection. Vet. Clin. North Am. Food Anim. Pract. 13, 35–53.
Risk factors for transmission and methods for control of CAEV infection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3isFeksA%3D%3D&md5=fda2a6344318f33fe1cbad2a4754929aCAS |

Rowe, J. D., East, N. E., Franti, C. E., Thurmond, M. C., Pederson, N. C., and Theilen, G. H. (1992). Risk factors associated with the incidence of seroconversion to caprine arthritis-encephalitis virus in goats on California dairies. Am. J. Vet. Res. 53, 2396–2403.
| 1:STN:280:DyaK3s7hvFSiug%3D%3D&md5=13e1bcd731626340a411301ec84c2663CAS |

Rowe, J. D., Van Hoosear, K., East, N., and Derock, E. J. (1999). The presence of caprine arthritis-encephalitis virus proviral DNA in postpartum genital secretion of dairy goat does. In ‘Proceedings of the 26th Word Veterinary Congress’, 23–26 September 1999, Lyon, France. (Ed. WVA.) pp. 23–26. (CRC WVA: Bruxelles.)

Singh, E. L. (1987). The disease control potential of embryos. Theriogenology 27, 9–20.
The disease control potential of embryos.Crossref | GoogleScholarGoogle Scholar |

Smith, M. C., and Cutlip, R. C. (1988). Effects of infection with caprine arthritis-encephalitis virus on milk production in goats. J. Am. Vet. Med. Assoc. 193, 63–67.
| 1:STN:280:DyaL1czjtVGrsQ%3D%3D&md5=2d67011be82f26b884bb48e6fcb9bd53CAS |

Staigmiller, R. B., and Moor, R. M. (1984). Competence of ovine oocytes matured outside the follicle. Gamete Res. 9, 221–229.
Competence of ovine oocytes matured outside the follicle.Crossref | GoogleScholarGoogle Scholar |

Stringfellow, D. A. (2011). Recommendation for the sanitary handling of in vivo-derived embryos. In ‘Manual of the International Embryo Transfer Society’, 4th edn. (Ed. International Embryo Transfer Society (IETS).) pp. 73–76. (IETS: Champaign, IL.)

Stringfellow, D. A., and Givens, M. D. (2000). Preventing disease transmission through the transfer of in vivo-derived bovine embryos. Livest. Prod. Sci. 62, 237–251.
Preventing disease transmission through the transfer of in vivo-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Tabet, E., Hosri, C., and Abi-Rizk, A. (2015). Caprine arthritis encephalitis virus: prevalence and risk factors in Lebanon. Rev. Sci. Tech. 34, 915–921.

Thibault, C., and Levasseur, M. C. (2001). L’épididyme et les glandes annexes. In ‘« La reproduction chez les mammifères et l’homme’. (Ed. Ellipses/INRA) pp. 290–315. (MARKETING: Paris.)

Travassos, C., Benoît, C., Valas, S., da Silva, A., and Perrin, G. (1998). Detection of caprine arthritis encephalitis virus in sperm of experimentally infected bucks. Vet. Res. 29, 579–584.
| 1:STN:280:DyaK1M%2FmvVSjsw%3D%3D&md5=fdc66651a984f30a8fcaae038e27ff88CAS |

Turchetti, A. P., Paniago, J. J., da Costa, L. F., da Cruz, J. C., Braz, G. F., Gouveia, A. M., Paixão, T. A., Santos, R. L., and Heinemann, M. B. (2013). Distribution of caprine arthritis encephalitis virus provirus, RNA, and antigen in the reproductive tract of one naturally and seven experimentally infected bucks. Theriogenology 80, 933–939.
Distribution of caprine arthritis encephalitis virus provirus, RNA, and antigen in the reproductive tract of one naturally and seven experimentally infected bucks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlWjtrzO&md5=dfacea3f4adc3c2ebd872839ee235939CAS |

Turelli, P., Petursson, G., Guiguen, F., Mornex, J. F., Vigne, R., and Quérat, G. (1996). Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses. J. Virol. 70, 1213–1217.
| 1:CAS:528:DyaK28Xks1agtg%3D%3D&md5=8cf4002fea1f880979e27d6dc2527995CAS |

Van Soom, A., Nauwynck, H., and Wrathall, A. (2011). Scientific foundations for the epidemiological safety of embryo transfer. In ‘Manual of the International Embryo Transfer Society’, 4th edn. (Ed. International Embryo Transfer Society (IETS).) pp. 15–44. (IETS: Champaign, IL).

Vitu, C., Russo, P., Vignoni, M., and Delor, V. (1988). L’Arthrite Encéphalite en enzootique caprine en France: Recherches épidémiologiques et expérimentales. Comp. Immunol. Microbiol. Infect. Dis. 11, 27–34.
L’Arthrite Encéphalite en enzootique caprine en France: Recherches épidémiologiques et expérimentales.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3lsVSqsw%3D%3D&md5=c02cc36af0e58e425a49cffd2e411701CAS |

Wolfe, D. F., Nusbaum, K. E., Lauerman, L. H., Mysinger, P. W., Ridell, M. G., Putnam, M. R., Shumway, L. S., and Powe, T. A. (1987). Embryo transfer from goats seropositive for caprine arthritis-encephalitis virus. Theriogenology 28, 307–316.
Embryo transfer from goats seropositive for caprine arthritis-encephalitis virus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFSkuw%3D%3D&md5=ac3843267c5dbee31aa781a0966c352fCAS |

Wrathall, A. E., and Sutmöller, P. (1998). Potential of embryo transfer to control transmission of disease. In ‘Manual of the International Embryo Transfer Society’, 3rd edn. (Ed. International Embryo Transfer Society (IETS).) pp. 17–44. (IETS: Champaign, IL).

Zanoni, R., Pauli, U., and Peterhans, E. (1990). Detection of caprine arthritis-encephalitis and maedi-visna viruses using the polymerase chain reaction. Experientia 46, 316–319.
Detection of caprine arthritis-encephalitis and maedi-visna viruses using the polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlOiurw%3D&md5=f2c20f0375defe9cb11c4b39544c70e5CAS |

Zink, M. C., Yager, J. A., and Myers, J. D. (1990). Pathogenesis of caprine arthritis-encephalitis virus. Cellular localization of viral transcripts in tissues of infected goats. Am. J. Pathol. 136, 843–854.
| 1:STN:280:DyaK3c3isFSrug%3D%3D&md5=b3560adafec4b01d0bc9993695cbaa7eCAS |