Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid

Wannisa Sukhorum A and Sitthichai Iamsaard A B C
+ Author Affiliations
- Author Affiliations

A Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.

B Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.

C Corresponding author. Email: sittia@kku.ac.th

Reproduction, Fertility and Development 29(8) 1585-1592 https://doi.org/10.1071/RD16205
Published online: 11 August 2016

Abstract

Valproic acid (VPA), an anti-epileptic drug, reduces testosterone levels and sperm quality. However, the degree to which testosterone levels and sperm quality are decreased under VPA treatment needs to be clarified. The aim of the present study was to investigate the testicular proteins involved in testosterone synthesis and spermatogenesis, histopathology and sperm acrosome status in VPA-treated rats. Adult rats were divided into control and experimental groups (n = 8 in each). Rats in the experimental group were treated with 500 mg kg–1, i.p., VPA for 10 consecutive days. Expression of Ki-67, tyrosine phosphorylated proteins and testicular steroidogenic proteins was examined. As expected, VPA-treated rats exhibited adverse changes in almost all reproductive parameters, particularly an increase in precocious acrosome reactions, compared with the control group. In addition, fibrosis of the tunica albuginea and tubule basement membrane was observed in testes from VPA-treated rats. Moreover, the expression of testicular Ki-67, cholesterol side-chain cleavage enzyme (P450scc) and phosphorylated proteins (41, 51 and 83 kDa) was decreased significantly in VPA-treated rats compared with control. In contrast, the expression of steroidogenic acute regulatory proteins in the VPA-treated group was significantly higher than in the control group. In conclusion, VPA treatment changes the expression of testicular proteins responsible for spermatogenesis and testosterone production, resulting in male infertility.

Additional keywords: cytochrome P450scc (CYP11A1), Ki-67, steroidogenic acute regulatory protein (StAR), tyrosine testicular phosphorylated protein.


References

Arad-Dann, H., Beller, U., Haimovitch, R., Gavrieli, Y., and Ben-Sasson, S. A. (1993). Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues. J. Histochem. Cytochem. 41, 513–519.
Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlSrsL4%3D&md5=14a47473880d1b05c52161555bae0697CAS | 7680679PubMed |

Arun, S., Burawat, J., Sukhorum, W., Sampannang, A., Uabuadit, N., and Iamsaard, S. (2016). Changes of testicular phosphorylated proteins in response to restraint stress in male rats. J. Zhejiang Univ. Sci. B 17, 21–29.
Changes of testicular phosphorylated proteins in response to restraint stress in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVaktbg%3D&md5=1dd541df8b581ff2bf5e94e9eb304dd1CAS | 26739523PubMed |

Baert, Y., Braye, A., Struijk, R. B., van Pelt, A. M., and Goossens, E. (2015). Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil. Steril. 104, 1244–1252.e1–4.
Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyrsL3F&md5=7c931e60a075d1f6fa860073240f51f7CAS | 26260199PubMed |

Bairy, L., Paul, V., and Rao, Y. (2010). Reproductive toxicity of sodium valproate in male rats. Indian J. Pharmacol. 42, 90–94.
Reproductive toxicity of sodium valproate in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVylt7vP&md5=31d40b1afc1b056be9baaedba0a1fcb2CAS | 20711373PubMed |

Bauer, J., Blumenthal, S., Reuber, M., and Stoffel-Wangner, B. (2004). Epilepsy syndrome, focus location, and treatment choice affect testicular function in men with epilepsy. Neurology 62, 243–246.
Epilepsy syndrome, focus location, and treatment choice affect testicular function in men with epilepsy.Crossref | GoogleScholarGoogle Scholar | 14745061PubMed |

Bendahmane, M., Zeng, H. T., and Tulsiani, D. R. (2002). Assessment of acrosomal status in rat spermatozoa: studies on carbohydrate and non-carbohydrate agonists. Arch. Biochem. Biophys. 404, 38–47.
Assessment of acrosomal status in rat spermatozoa: studies on carbohydrate and non-carbohydrate agonists.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltlSqu7Y%3D&md5=0732e178ae8a3a91dc4a94390b61b609CAS | 12127067PubMed |

Berendsen, S., Broekman, M., Seute, T., Snijders, T., van Es, C., de Vos, F., Regli, L., and Robe, P. (2012). Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin. Investig. Drugs 21, 1391–1415.
Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rs7nN&md5=82160033301ced63ec0e56ee26f4ba6cCAS | 22668241PubMed |

Bialer, M., and Yagen, B. (2007). Valproic acid: second generation. Neurotherapeutics 4, 130–137.
Valproic acid: second generation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFaksbo%3D&md5=77c2b300404d68ed9404b54f3622e10bCAS | 17199028PubMed |

Brion, L., Gorostizaga, A., Gómez, N. V., Podestá, E. J., Cornejo Maciel, F., and Paz, C. (2011). Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells. Toxicol. In Vitro 25, 7–12.
Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agsb7L&md5=16d8f52ecc5c336b0b4061a889c4bd59CAS | 20732403PubMed |

Buffone, M. G., Kim, K. S., Doak, B. J., Rodriguez-Miranda, E., and Gerton, G. L. (2009). Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix. J. Cell Sci. 122, 3153–3160.
Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WksbzI&md5=a6d8ba9cc2c0f5bcaabb37934daf3bc5CAS | 19654207PubMed |

Buffone, M. G., Hirohashi, N., and Gerton, G. L. (2014). Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol. Reprod. 90, 112.
Unresolved questions concerning mammalian sperm acrosomal exocytosis.Crossref | GoogleScholarGoogle Scholar | 24671881PubMed |

Death, A. K., McGrath, K. C., and Handelsman, D. J. (2005). Valproate is an anti-androgen and anti-progestin. Steroids 70, 946–953.
Valproate is an anti-androgen and anti-progestin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1egu73E&md5=2c24d516857cf5ecde8e455dfad3f282CAS | 16165177PubMed |

Girish, C., Shweta, O., Raj, V., Balakrishnan, S., and Varghese, R. G. (2014). Ellagic acid modulates sodium valproate reproductive toxicity in male Wistar rats. Indian J. Physiol. Pharmacol. 58, 416–422.
| 1:CAS:528:DC%2BC2cXitFGiurbM&md5=cdd2779ea05f7c3c708099693a567367CAS | 26215011PubMed |

Glister, C., Satchell, L., Michael, A. E., Bicknell, A. B., and Knight, P. G. (2012). The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro. PLoS One 7, e49553.
The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCqu7fP&md5=e94824b2748e17a776260d126c565d68CAS | 23152920PubMed |

Göttlicher, M. (2004). Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83, S91–S92.
| 15124690PubMed |

Gustavsen, M. W., von Krogh, K., Taubøll, E., Zimmer, K. E., Dahl, E., Olsaker, I., Ropstad, E., and Verhaegen, S. (2009). Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model. Acta Neurol. Scand. Suppl. 120, 14–21.
Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model.Crossref | GoogleScholarGoogle Scholar |

Hamza, A. A., and Amin, A. (2007). Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats. J. Exp. Zool. A Ecol. Genet. Physiol. 307A, 199–206.
Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVSjt7c%3D&md5=cbaa643d7b98496e08a819aa26febf95CAS |

Hu, M. C., Hsu, N. C., El Hadj, N. B., Pai, C. I., Chu, H. P., Wang, C. K., and Chung, B. C. (2002). Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 16, 1943–1950.
Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCmur4%3D&md5=6cb9e88c91ff06d16c6e76562f2a745aCAS | 12145347PubMed |

Iamsaard, S., Vanichviriyakit, R., Hommalai, G., Saewu, A., Srakaew, N., Withyachumnarnkul, B., Basak, A., and Tanphaichitr, N. (2011). Enzymatic activity of sperm proprotein convertase is important for mammalian fertilization. J. Cell. Physiol. 226, 2817–2826.
Enzymatic activity of sperm proprotein convertase is important for mammalian fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKksrjE&md5=5ad05b785a1c708f9726012cc2a13dc8CAS | 21302280PubMed |

Iamsaard, S., Prabsattroo, T., Sukhorum, W., Muchimapura, S., Srisaard, P., Uabundit, N., Thukhammee, W., and Wattanathorn, J. (2013). Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats. J. Zhejiang Univ. Sci. B 14, 247–252.
Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFektbk%3D&md5=5d2e637e5f1b1aa46421a533cd7acdafCAS | 23463768PubMed |

Iamsaard, S., Arun, S., Burawat, J., Sukhorum, W., Boonruangsri, P., Namking, M., Uabundit, N., Nualkaew, S., and Sripanidkulchai, B. (2015). Phylanthus emblica L. branch extract ameliorates testicular damage in valproic acid-induced rats. Int. J. Morphol. 33, 1016–1022.
Phylanthus emblica L. branch extract ameliorates testicular damage in valproic acid-induced rats.Crossref | GoogleScholarGoogle Scholar |

Isojärvi, J. (2008). Disorders of reproduction in patients with epilepsy: antiepileptic drug related mechanisms. Seizure 17, 111–119.
Disorders of reproduction in patients with epilepsy: antiepileptic drug related mechanisms.Crossref | GoogleScholarGoogle Scholar | 18164216PubMed |

Khan, S., Ahmad, T., Parekh, C. V., Trivedi, P. P., Kushwaha, S., and Jena, G. (2011). Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod. Toxicol. 32, 385–394.
Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFegtrnK&md5=b83457eb556d7de98d684fc74b3aef51CAS | 22001255PubMed |

Koromilas, A. E. (2015). Roles of the translation initiation factor elF2α serine 51 phosphorylation in cancer formation and treatment. Biochim. Biophys. Acta 1849, 871–880.
Roles of the translation initiation factor elF2α serine 51 phosphorylation in cancer formation and treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvFyisQ%3D%3D&md5=377d19e21008905c3e06d1eb8612e694CAS | 25497381PubMed |

Krogenaes, A. K., Taubøll, E., Stien, A., Oskam, I. C., Lyche, J. L., Dahl, E., Thomassen, R. F., Sweeney, T., and Ropstad, E. (2008). Valproate affects reproductive endocrine function, testis diameter and some semen variables in non-epileptic adolescent goat bucks. Theriogenology 70, 15–26.
Valproate affects reproductive endocrine function, testis diameter and some semen variables in non-epileptic adolescent goat bucks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVymurw%3D&md5=b417e6c0a53a9a1333ae95a18db71ce5CAS | 18394693PubMed |

Kutlu, Ö., Cansu, A., Karagüzel, E., Gürgen, S. G., Koç, Ö., Gür, M., and Özgür, G. K. (2012). Effect of valproic acid treatment on penile structure in prepubertal rats. Epilepsy Res. 99, 306–311.
Effect of valproic acid treatment on penile structure in prepubertal rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlKgsrw%3D&md5=dba120fc70627a6b1ffb22a1c0103118CAS | 22281060PubMed |

Landreh, L., Stukenborg, J. B., Söder, O., and Svechnikov, K. (2013). Phenotype and steroidogenic potential of PDGFRα-positive rat neonatal peritubular cells. Mol. Cell. Endocrinol. 372, 96–104.
Phenotype and steroidogenic potential of PDGFRα-positive rat neonatal peritubular cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2ltL0%3D&md5=0f9833ccc6d5049788bbae8a9ab28715CAS | 23545158PubMed |

Mannaerts, I., Nuytten, N. R., Rogiers, V., Vanderkerken, K., van Grunsven, L. A., and Geerts, A. (2010). Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology 51, 603–614.
Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVGnsr4%3D&md5=19f192fe6904dc11676f7ac143351e6dCAS | 19957378PubMed |

Nishimura, T., Sakai, M., and Yonezawa, H. (2000). Effects of valproic acid on fertility and reproductive organs in male rats. J. Toxicol. Sci. 25, 85–93.
Effects of valproic acid on fertility and reproductive organs in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVGqs7w%3D&md5=b62d8afc7a0ffc33424136e13ae11b7bCAS | 10845186PubMed |

Qi, L., Liu, Z., Wang, J., Cui, Y., Guo, Y., Zhou, T., Zhou, Z., Guo, X., Xue, Y., and Sha, J. (2014). Systematic analysis of the phosphoteome and kinase-substrate networks in the mouse testis. Mol. Cell. Proteomics 13, 3626–3638.
Systematic analysis of the phosphoteome and kinase-substrate networks in the mouse testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2rtrzI&md5=4de8f59139d1958b05d1f49bbf1b55ebCAS | 25293948PubMed |

Romarowski, A., Battistone, M. A., La Spina, F. A., Puga Molina Ldel, C., Luque, G. M., Vitale, A. M., Cuasnicu, P. S., Visconti, P. E., Krapf, D., and Buffone, M. G. (2015). PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev. Biol. 405, 237–249.
PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFOksrnL&md5=afdcbb0ad70b0862f09716ad55bcd9e1CAS | 26169470PubMed |

Rosenberg, G. (2007). The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell. Mol. Life Sci. 64, 2090–2103.
The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVaisb7F&md5=925265a62cc61174c459863df9f62d62CAS | 17514356PubMed |

Røste, L. S., Taubøll, E., Mørkrid, L., Bjørnenak, T., Saetre, E. R., Mørland, T., and Gjerstad, L. (2005). Antiepileptic drugs alter reproductive endocrine hormones in men with epilepsy. Eur. J. Neurol. 12, 118–124.
Antiepileptic drugs alter reproductive endocrine hormones in men with epilepsy.Crossref | GoogleScholarGoogle Scholar | 15679699PubMed |

Sakr, S., Zowail, M. E., and Marzouk, A. M. (2014). Effect of saffron (Crocus sativus L.) on sodium valproate induced cytogenetic and testicular alterations in albino rats. Anat. Cell Biol. 47, 171–179.
Effect of saffron (Crocus sativus L.) on sodium valproate induced cytogenetic and testicular alterations in albino rats.Crossref | GoogleScholarGoogle Scholar | 25276476PubMed |

Steger, K., Aleithe, I., Behre, H., and Bergmann, M. (1998). The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen. Mol. Hum. Reprod. 4, 227–233.
The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFSkt7s%3D&md5=5b0211aaa8deb4280743a7051bbe895fCAS | 9570268PubMed |

Stocco, D. M., and Clark, B. J. (1996). Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244.
Regulation of the acute production of steroids in steroidogenic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlalsbY%3D&md5=51524cc2655df4e4d638612f41767a91CAS | 8771357PubMed |

Stocco, D. M., and McPhaul, M. J. (2006). ‘Knobil and Neill’s Physiology of Reproduction.’ 3rd edn. (Elsevier.)

Sveberg Røste, L. S., Taubøll, E., Berner, A., Berg, K. A., Aleksandersen, M., and Gjerstad, L. (2001). Morphological changes in the testis after long-term valproate treatment in male Wistar rats. Seizure 10, 559–565.
Morphological changes in the testis after long-term valproate treatment in male Wistar rats.Crossref | GoogleScholarGoogle Scholar |

Taubøll, E., Røste, L. S., Svalheim, S., and Gjerstad, L. (2008). Disorders of reproduction in epilepsy: what can we learn from animal studies. Seizure 17, 120–126.
Disorders of reproduction in epilepsy: what can we learn from animal studies.Crossref | GoogleScholarGoogle Scholar | 18155932PubMed |

Vijay, P., Yeshwanth, R., and Bairy, K. L. (2008). The effect of sodium valproate on the biochemical parameters of reproductive function in male albino Wistar rats. Indian J. Pharmacol. 40, 248–250.
The effect of sodium valproate on the biochemical parameters of reproductive function in male albino Wistar rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVertbs%3D&md5=12fb92e9288911ddc41902f4af124108CAS | 21279179PubMed |

Walker, R. M., Smith, G. S., Barsoum, N. J., and Macallum, G. E. (1990). Preclinical toxicology of the anticonvulsant calcium valproate. Toxicology 63, 137–155.
Preclinical toxicology of the anticonvulsant calcium valproate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1Cnurc%3D&md5=43ab4d192ac4ed756841c214f00ad124CAS | 2119078PubMed |

Wang, Y. C., Peterson, S. E., and Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 24, 143–160.
Protein post-translational modifications and regulation of pluripotency in human stem cells.Crossref | GoogleScholarGoogle Scholar | 24217768PubMed |