Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Targeted deletion of the Kv6.4 subunit causes male sterility due to disturbed spermiogenesis

Glenn Regnier A , Elke Bocksteins A , Waleed F. Marei B C , Isabel Pintelon D , Jean-Pierre Timmermans D , Jo L. M. R. Leroy B and Dirk J. Snyders A E
+ Author Affiliations
- Author Affiliations

A Laboratory of Molecular Biophysics, Physiology and Pharmacology, Department of Biomedical Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium.

B Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, CDE, Universiteitsplein 1, 2610 Antwerpen, Belgium.

C Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.

D Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.

E Corresponding author. Email: dirk.snyders@uantwerpen.be

Reproduction, Fertility and Development 29(8) 1567-1575 https://doi.org/10.1071/RD16075
Submitted: 12 February 2016  Accepted: 16 July 2016   Published: 28 September 2016

Abstract

Electrically silent voltage-gated potassium (KvS) channel subunits (i.e. Kv5–Kv6 and Kv8–Kv9) do not form functional homotetrameric Kv channels, but co-assemble with Kv2 subunits, generating functional heterotetrameric Kv2­–KvS channel complexes in which the KvS subunits modulate the Kv2 channel properties. Several KvS subunits are expressed in testis tissue but knowledge about their contribution to testis physiology is lacking. Here, we report that the targeted deletion of Kv6.4 in a transgenic mouse model (Kcng4–/–) causes male sterility as offspring from homozygous females were only obtained after mating with wild-type (WT) or heterozygous males. Semen quality analysis revealed that the sterility of the homozygous males was caused by a severe reduction in total sperm-cell count and the absence of motile spermatozoa in the semen. Furthermore, spermatozoa of homozygous mice showed an abnormal morphology characterised by a smaller head and a shorter tail compared with WT spermatozoa. Comparison of WT and Kcng4–/– testicular tissue indicated that this inability to produce (normal) spermatozoa was due to disturbed spermiogenesis. These results suggest that Kv6.4 subunits are involved in the regulation of the late stages of spermatogenesis, which makes them a potentially interesting pharmacological target for the development of non-hormonal male contraceptives.

Additional keywords: fertility, knock out mouse, Kv channels, oligoasthenoteratozoospermia, spermatozoa.


References

Bavister, B. D., Leibfried, M. L., and Lieberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–247.
Development of preimplantation embryos of the golden hamster in a defined culture medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7lsVSjtw%3D%3D&md5=6352ebebbd0406f68a3b7c344ea2f383CAS | 6830941PubMed |

Blaine, J. T., and Ribera, A. B. (1998). Heteromultimeric potassium channels formed by members of the Kv2 subfamily. J. Neurosci. 18, 9585–9593.
| 1:CAS:528:DyaK1cXnslyrur4%3D&md5=48210cd62cc689cdadebc3523443f5b1CAS | 9822719PubMed |

Bobak, N., Bittner, S., Andronic, J., Hartmann, S., Muhlpfordt, F., Schneider-Hohendorf, T., Wolf, K., Schmelter, C., Gobel, K., Meuth, P., Zimmermann, H., Doring, F., Wischmeyer, E., Budde, T., Wiendl, H., Meuth, S. G., and Sukhorukov, V. L. (2011). Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels. Biochim. Biophys. Acta 1808, 2036–2044.
Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntV2msrs%3D&md5=347157401f2f8e86618c4ee076ea8c65CAS | 21575593PubMed |

Bocksteins, E. (2016). Kv5, Kv6, Kv8 and Kv9 subunits: no simple silent bystanders. J. Gen. Physiol. 147, 105–125.
Kv5, Kv6, Kv8 and Kv9 subunits: no simple silent bystanders.Crossref | GoogleScholarGoogle Scholar | 26755771PubMed |

Bocksteins, E., and Snyders, D. J. (2012). Electrically silent Kv subunits: their molecular and functional characteristics. Physiology (Bethesda) 27, 73–84.
Electrically silent Kv subunits: their molecular and functional characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFWrtro%3D&md5=a954920b0a26538cd2cf1e87dd0a2e00CAS | 22505664PubMed |

Chandy, K. G., DeCoursey, T. E., Cahalan, M. D., McLaughlin, C., and Gupta, S. (1984). Voltage-gated potassium channels are required for human T lymphocyte activation. J. Exp. Med. 160, 369–385.
Voltage-gated potassium channels are required for human T lymphocyte activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVyrs7k%3D&md5=6f20637393cd1fdce9db2be3c25e5449CAS | 6088661PubMed |

Chen, Y., Xu, J., Li, Y., and Han, X. (2011). Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR. Reprod. Toxicol. 31, 551–557.
Decline of sperm quality and testicular function in male mice during chronic low-dose exposure to microcystin-LR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFWmurc%3D&md5=60e792a39b53a07c415f8cce5ca187fdCAS | 21338672PubMed |

Cooper, T. G. (2011). The epididymis, cytoplasmic droplets and male fertility. Asian J. Androl. 13, 130–138.
The epididymis, cytoplasmic droplets and male fertility.Crossref | GoogleScholarGoogle Scholar | 21076437PubMed |

DeCoursey, T. E., Chandy, K. G., Gupta, S., and Cahalan, M. D. (1984). Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature 307, 465–468.
Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVSktrk%3D&md5=28599805b23da1f1dffa96f32b3be1a4CAS | 6320007PubMed |

Felipe, A., Snyders, D. J., Deal, K. K., and Tamkun, M. M. (1993). Influence of cloned voltage-gated K+ channel expression on alanine transport, Rb+ uptake, and cell volume. Am. J. Physiol. 265, C1230–C1238.
| 1:CAS:528:DyaK2cXhtVeisbk%3D&md5=6637767e915f2ca8074ee65b895ac8f6CAS | 8238476PubMed |

Felix, R., Serrano, C. J., Trevino, C. L., Munoz-Garay, C., Bravo, A., Navarro, A., Pacheco, J., Tsutsumi, V., and Darszon, A. (2002). Identification of distinct K+ channels in mouse spermatogenic cells and sperm. Zygote 10, 183–188.
Identification of distinct K+ channels in mouse spermatogenic cells and sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVKjtbk%3D&md5=cb4915b48c7ad8548ee7dcfb861f02d5CAS | 12056459PubMed |

Fisher, D. (2002). New light shed on fluid formation in the seminiferous tubules of the rat. J. Physiol. 542, 445–452.
New light shed on fluid formation in the seminiferous tubules of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1arsrs%3D&md5=f31fa57db5cebd8dfe98d6ebdd2da9adCAS | 12122144PubMed |

Frech, G. C., VanDongen, A. M., Schuster, G., Brown, A. M., and Joho, R. H. (1989). A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340, 642–645.
A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXitlSmt7w%3D&md5=227ffe3723e8a337dc336f93584e7f09CAS | 2770868PubMed |

Fujita, E., Tanabe, Y., Hirose, T., Aurrand-Lions, M., Kasahara, T., Imhof, B. A., Ohno, S., and Momoi, T. (2007). Loss of partitioning-defective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice. Am. J. Pathol. 171, 1800–1810.
Loss of partitioning-defective-3/isotype-specific interacting protein (par-3/ASIP) in the elongating spermatid of RA175 (IGSF4A/SynCAM)-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntlaltQ%3D%3D&md5=21cd0fb1587ac7c2871bc4d15f623557CAS | 18055550PubMed |

Gong, X. D., Li, J. C., Leung, G. P., Cheung, K. H., and Wong, P. Y. (2002). A BK(Ca) to K(v) switch during spermatogenesis in the rat seminiferous tubules. Biol. Reprod. 67, 46–54.
A BK(Ca) to K(v) switch during spermatogenesis in the rat seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itrY%3D&md5=fe2465e0b072013b6a8c44ea6d116906CAS | 12079998PubMed |

Gutman, G. A., Chandy, K. G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L. A., Robertson, G. A., Rudy, B., Sanguinetti, M. C., Stuhmer, W., and Wang, X. (2005). International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473–508.
International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFWnsr4%3D&md5=5f1e2eeeb7fc1e2deb31c69777b2325fCAS | 16382104PubMed |

Hagiwara, S., and Kawa, K. (1984). Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules. J. Physiol. 356, 135–149.
Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsVyqsLk%3D&md5=5561ed4fa8d3baf31e552b306c42e137CAS | 6151599PubMed |

Hai, Y., Hou, J., Liu, Y., Liu, Y., Yang, H., Li, Z., and He, Z. (2014). The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Semin. Cell Dev. Biol. 29, 66–75.
The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvVWqs7c%3D&md5=8563103fafb5da22c01901d5de44bb65CAS | 24718316PubMed |

Hemmerlein, B., Weseloh, R. M., Mello de Queiroz, F., Knötgen, H., Sánchez, A., Rubio, M. E., Martin, S., Schliephacke, T., Jenke, M., Heinz-Joachim-Radzun, , Stühmer, W., and Pardo, L. A. (2006). Overexpression of Eag1 potassium channels in clinical tumours. Mol. Cancer 5, 41.
Overexpression of Eag1 potassium channels in clinical tumours.Crossref | GoogleScholarGoogle Scholar | 17022810PubMed |

Hwang, P. M., Glatt, C. E., Bredt, D. S., Yellen, G., and Snyder, S. H. (1992). A novel K+ channel with unique localizations in mammalian brain: molecular cloning and characterization. Neuron 8, 473–481.
A novel K+ channel with unique localizations in mammalian brain: molecular cloning and characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitV2rsL8%3D&md5=1fa78310c15f389ca30c3942883daf33CAS | 1550672PubMed |

Lafrenière, R. G., and Rouleau, G. A. (2012). Identification of novel genes involved in migraine. Headache 52, 107–110.
Identification of novel genes involved in migraine.Crossref | GoogleScholarGoogle Scholar | 23030542PubMed |

Lock, H., and Valverde, M. A. (2000). Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells. J. Biol. Chem. 275, 34849–34852.
Contribution of the IsK (MinK) potassium channel subunit to regulatory volume decrease in murine tracheal epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFeisrc%3D&md5=27eee410107be9fa95b23d50189e2bdeCAS | 10995738PubMed |

Miguel-Velado, E., Perez-Carretero, F. D., Colinas, O., Cidad, P., Heras, M., Lopez-Lopez, J. R., and Perez-Garcia, M. T. (2010). Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovasc. Res. 86, 383–391.
Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKqt7c%3D&md5=6859cc701499901506bbdcd9c6c5e05cCAS | 20093253PubMed |

Müller, D., Cherukuri, P., Henningfeld, K., Poh, C. H., Wittler, L., Grote, P., Schlüter, O., Schmidt, J., Laborda, J., Bauer, S. R., Brownstone, R. M., and Marquardt, T. (2014). Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343, 1264–1266.
Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution.Crossref | GoogleScholarGoogle Scholar | 24626931PubMed |

Neprasova, H., Anderova, M., Petrik, D., Vargova, L., Kubinova, S., Chvatal, A., and Sykova, E. (2007). High extracellular K+ evokes changes in voltage-dependent K+ and Na+ currents and volume regulation in astrocytes. Pflugers Arch. 453, 839–849.
High extracellular K+ evokes changes in voltage-dependent K+ and Na+ currents and volume regulation in astrocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVeiu7w%3D&md5=efd042072b15d39075efddc28a6786f4CAS | 17031668PubMed |

O’Donnell, L. (2014). Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 4, e979623.
Mechanisms of spermiogenesis and spermiation and how they are disturbed.Crossref | GoogleScholarGoogle Scholar | 26413397PubMed |

Ottschytsch, N., Raes, A., Van Hoorick, D., and Snyders, D. J. (2002). Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome. Proc. Natl. Acad. Sci. USA 99, 7986–7991.
Obligatory heterotetramerization of three previously uncharacterized Kv channel alpha-subunits identified in the human genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGjt7w%3D&md5=f7cfee7b17323cf860520b6137545eeaCAS | 12060745PubMed |

Pace, A. J., Lee, E., Athirakul, K., Coffman, T. M., O’Brien, D. A., and Koller, B. H. (2000). Failure of spermatogenesis in mouse lines deficient in the Na+–K+–2Cl– cotransporter. J. Clin. Invest. 105, 441–450.
Failure of spermatogenesis in mouse lines deficient in the Na+–K+–2Cl cotransporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlygu70%3D&md5=f61fc7ed78805a7d739b8d032deb5f80CAS | 10683373PubMed |

Pardo, L. A. (2004). Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19, 285–292.
Voltage-gated potassium channels in cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFymsr4%3D&md5=6b2f09bce57a287481a58588dd29b2dfCAS | 15381757PubMed |

Pardo, L. A., del Camino, D., Sanchez, A., Alves, F., Bruggemann, A., Beckh, S., and Stuhmer, W. (1999). Oncogenic potential of EAG K+ channels. EMBO J. 18, 5540–5547.
Oncogenic potential of EAG K+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFCms70%3D&md5=9929efe2194514b714c3ed8d2230cc48CAS | 10523298PubMed |

Rato, L., Socorro, S., Cavaco, J. E., and Oliveira, P. F. (2010). Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells. J. Membr. Biol. 236, 215–224.
Tubular fluid secretion in the seminiferous epithelium: ion transporters and aquaporins in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKhtbnF&md5=d0f24b87e680cb9d119c08d2617761b8CAS | 20697886PubMed |

Stas, J. I., Bocksteins, E., Labro, A. J., and Snyders, D. J. (2015). Modulation of closed-state inactivation in Kv2.1/Kv6.4 heterotetramers as mechanism for 4-AP induced potentiation. PLoS One 10, e0141349.
Modulation of closed-state inactivation in Kv2.1/Kv6.4 heterotetramers as mechanism for 4-AP induced potentiation.Crossref | GoogleScholarGoogle Scholar | 26505474PubMed |

Tsevi, I., Vicente, R., Grande, M., Lopez-Iglesias, C., Figueras, A., Capella, G., Condom, E., and Felipe, A. (2005). KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: expression associated with testis pathologies. J. Cell. Physiol. 202, 400–410.
KCNQ1/KCNE1 channels during germ-cell differentiation in the rat: expression associated with testis pathologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1ajtA%3D%3D&md5=36f793b0840ad7d135a6471576ac6ef9CAS | 15389592PubMed |

Tuck, R. R., Waites, G. M., Young, J. A., and Setchell, B. P. (1970). Composition of fluid secreted by the seminiferous tubules of the rat collected by catheterization and micropuncture techniques. J. Reprod. Fertil. 21, 367–368.
Composition of fluid secreted by the seminiferous tubules of the rat collected by catheterization and micropuncture techniques.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7otVGnsQ%3D%3D&md5=a3f78125bf98a8b7fb66e10fa272913dCAS | 5443223PubMed |

Udagawa, O., Ito, C., Ogonuki, N., Sato, H., Lee, S., Tripvanuntakul, P., Ichi, I., Uchida, Y., Nishimura, T., Murakami, M., Ogura, A., Inoue, T., Toshimori, K., and Arai, H. (2014). Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family. Genes Cells 19, 13–27.
Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFyrtL%2FO&md5=a3e9cf7054575ed15064fa5341419021CAS | 24245814PubMed |

van der Weyden, L., Arends, M. J., Chausiaux, O. E., Ellis, P. J., Lange, U. C., Surani, M. A., Affara, N., Murakami, Y., Adams, D. J., and Bradley, A. (2006). Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol. Cell. Biol. 26, 3595–3609.
Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVKksb8%3D&md5=6433de01d2a11f635b98441c64828712CAS | 16611999PubMed |

van Tol, B. L., Missan, S., Crack, J., Moser, S., Baldridge, W. H., Linsdell, P., and Cowley, E. A. (2007). Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7. Am. J. Physiol. Cell Physiol. 293, C1010–C1019.
Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVOqsLfL&md5=436ce4af02e92044b8ea070bb16eee7aCAS |

Wehner, F. (2006). Cell volume-regulated cation channels. Contrib. Nephrol. 152, 25–53.
Cell volume-regulated cation channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ynsLw%3D&md5=2df59230520ac3c68a1e0027a7548189CAS | 17065806PubMed |

Xiao, X., Mruk, D. D., Wong, C. K., and Cheng, C. Y. (2014). Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda) 29, 286–298.
Germ cell transport across the seminiferous epithelium during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCju7rJ&md5=50c4d8f064e8eec4b9835a3f92f8921aCAS | 24985332PubMed |

Yan, W. (2009). Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol. Cell. Endocrinol. 306, 24–32.
Male infertility caused by spermiogenic defects: lessons from gene knockouts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ait7s%3D&md5=6648e2c7b6bb9715971ce36bf63a7320CAS | 19481682PubMed |

Yeung, C. H., and Cooper, T. G. (2008). Potassium channels involved in human sperm volume regulation – quantitative studies at the protein and mRNA levels. Mol. Reprod. Dev. 75, 659–668.
Potassium channels involved in human sperm volume regulation – quantitative studies at the protein and mRNA levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFClu7s%3D&md5=2a661f4814b0a3b4c198fe62f1496e38CAS | 18157847PubMed |