Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

LIM kinase activity is required for microtubule organising centre positioning in mouse oocyte meiosis

Xin Li A , Yubo Zhu B , Yan Cao A , Qian Wang A , Juan Du A , Jianhui Tian C , Yuanjing Liang A D and Wei Ma A D
+ Author Affiliations
- Author Affiliations

A Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.

B College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110886, China.

C Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Sciences and Technology, China Agricultural University, Beijing, 100094, China.

D Corresponding authors. Emails: mawei1026@ccmu.edu.cn; y3liang@126.com

*These authors contributed equally to this work.

Reproduction, Fertility and Development 29(4) 791-804 https://doi.org/10.1071/RD15406
Submitted: 8 October 2015  Accepted: 27 November 2015   Published: 6 January 2016

Abstract

LIM kinase 1 (LIMK1) activity is essential for cell migration and cell cycle progression. Little is known about LIMK1 expression and function in mammalian oocytes. In the present study we assessed LIMK1 protein expression, subcellular distribution and function during mouse oocyte meiosis. Western blot analysis revealed high and stable expression of LIMK1 from the germinal vesicle (GV) to MII stage. In contrast, activated LIMK1 (i.e. LIMK1 phosphorylated at threonine 508 (pLIMK1Thr508)) was only detected after GV breakdown, with levels increasing gradually to peak at MI and MII. Immunofluorescence showed pLIMK1Thr508 was colocalised with the microtubule organising centre (MTOC) components pericentrin and γ-tubulin at the spindle poles. A direct interaction between γ-tubulin and pLIMK1Thr508 was confirmed by co-immunoprecipitation. LIMK inhibition with 1 μM BMS3 damaged MTOC protein localisation to spindle poles, undermined the formation and positioning of functional MTOC and thus disrupted spindle formation and chromosome alignment. These effects were phenocopied by microinjection of LIMK1 antibody into mouse oocytes. In summary, the data demonstrate that LIMK activity is essential for MTOC organisation and distribution and so bipolar spindle formation and maintenance in mouse oocytes.

Additional keywords: bipolar establishment, BMS3, spindle formation.


References

Abe, Y., Ohsugi, M., Haraguchi, K., Fujimoto, J., and Yamamoto, T. (2006). LATS2–Ajuba complex regulates γ-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett. 580, 782–788.
LATS2–Ajuba complex regulates γ-tubulin recruitment to centrosomes and spindle organization during mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFejsLk%3D&md5=117e95cda64088678c59ddbc3fbe4acdCAS | 16413547PubMed |

Amano, T., Kaji, N., Ohashi, K., and Mizuno, K. (2002). Mitosis-specific activation of Lim motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis. J. Biol. Chem. 277, 22 093–22 102.
Mitosis-specific activation of Lim motif-containing protein kinase and roles of cofilin phosphorylation and dephosphorylation in mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xksl2jt74%3D&md5=05c3cceb225963649f684348249d3ef8CAS |

Bannigan, A., and Baskin, T. I. (2007). A conserved role for kinesin-5 in plant mitosis. J. Cell Sci. 120, 2819–2827.
A conserved role for kinesin-5 in plant mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSjsbbN&md5=fccce0daf90baa7e9308b6773c3eb8deCAS | 17652157PubMed |

Bernard, O. (2007). Lim kinases, regulators of actin dynamics. Int. J. Biochem. Cell Biol. 39, 1071–1076.
Lim kinases, regulators of actin dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVejtbw%3D&md5=5914ed82eb7a8262f93eee7839d02053CAS | 17188549PubMed |

Breuer, M., Kolano, A., Kwon, M., Li, C. C., Tsai, T. F., Pellman, D., Brunet, S., and Verlhac, M. H. (2010). HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells. J. Cell Biol. 191, 1251–1260.
HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Squw%3D%3D&md5=a1c6f60616fc66ed8b1f79cea745e0f3CAS | 21173113PubMed |

Brunet, S., and Verlhac, M. H. (2011). Positioning to get out of meiosis: the asymmetry of division. Hum. Reprod. Update 17, 68–75.
Positioning to get out of meiosis: the asymmetry of division.Crossref | GoogleScholarGoogle Scholar | 20833637PubMed |

Brunet, S., Dumont, J., Lee, K. W., Kinoshita, K., Hikal, P., Gruss, O. J., Maro, B., and Verlhac, M. H. (2008). Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes. PLoS One 3, e3338.
Meiotic regulation of TPX2 protein levels governs cell cycle progression in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 18833336PubMed |

Chakrabarti, R., Jones, J. L., Oelschlager, D. K., Tapia, T., Tousson, A., and Grizzle, W. E. (2007). Phosphorylated LIM kinases colocalize with γ-tubulin in centrosomes during early stages of mitosis. Cell Cycle 6, 2944–2952.
Phosphorylated LIM kinases colocalize with γ-tubulin in centrosomes during early stages of mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFOltbg%3D&md5=354282dc1d8ece7dc44b177b17ff4edaCAS | 18000399PubMed |

Fant, X., Merdes, A., and Haren, L. (2004). Cell and molecular biology of spindle poles and NuMA. Int. Rev. Cytol. 238, 1–57.
Cell and molecular biology of spindle poles and NuMA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVaksr3N&md5=bd97c7e78fd19ddc7a5b38c37524b88dCAS | 15364196PubMed |

Gable, A., Qiu, M., Titus, J., Balchand, S., Ferenz, N. P., Ma, N., Collins, E. S., Fagerstrom, C., Ross, J. L., Yang, G., and Wadsworth, P. (2012). Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2. Mol. Biol. Cell 23, 1254–1266.
Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFSqsr4%3D&md5=a899ef72579fe55c17a4b117852ebd43CAS | 22337772PubMed |

Gadde, S., and Heald, R. (2004). Mechanisms and molecules of the mitotic spindle. Curr. Biol. 14, R797–R805.
Mechanisms and molecules of the mitotic spindle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFansLo%3D&md5=14c51d4e3f7455d748747375c9935b30CAS | 15380094PubMed |

Gorovoy, M., Niu, J., Bernard, O., Profirovic, J., Minshall, R., Neamu, R., and Voyno-Yasenetskaya, T. (2005). LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells. J. Biol. Chem. 280, 26 533–26 542.
LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFymu70%3D&md5=794df7b9248b367f73d007f34ec93ab3CAS |

Kaji, N., Muramoto, A., and Mizuno, K. (2008). LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning. J. Biol. Chem. 283, 4983–4992.
LIM kinase-mediated cofilin phosphorylation during mitosis is required for precise spindle positioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFeksLg%3D&md5=678da2494b486371c3d7231a83bd0c35CAS | 18079118PubMed |

Kwon, M., and Scholey, J. M. (2004). Spindle mechanics and dynamics during mitosis in Drosophila. Trends Cell Biol. 14, 194–205.
Spindle mechanics and dynamics during mitosis in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVGjt7s%3D&md5=ee2507471f00127accb58ad1132df00bCAS | 15066637PubMed |

Lee, J. (2013). Roles of cohesin and condensin in chromosome dynamics during mammalian meiosis. J. Reprod. Dev. 59, 431–436.
Roles of cohesin and condensin in chromosome dynamics during mammalian meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVClsr7F&md5=2c14088817b858f8285f4f28975857c6CAS | 24162807PubMed |

Li, R., Doherty, J., Antonipillai, J., Chen, S., Devlin, M., Visser, K., Baell, J., Street, I., Anderson, R. L., and Bernard, O. (2013). LIM kinase inhibition reduces breast cancer growth and invasiveness but systemic inhibition does not reduce metastasis in mice. Clin. Exp. Metastasis 30, 483–495.
LIM kinase inhibition reduces breast cancer growth and invasiveness but systemic inhibition does not reduce metastasis in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsFWqsLg%3D&md5=0c87e3ac4d9ec5c53aaa4379882b5defCAS | 23239465PubMed |

Liu, M., Li, D., Sun, L., Chen, J., Sun, X., Zhang, L., Huo, L., and Zhou, J. (2014). Modulation of Eg5 activity contributes to mitotic spindle checkpoint activation and Tat-mediated apoptosis in CD4-positive T-lymphocytes. J. Pathol. 233, 138–147.
Modulation of Eg5 activity contributes to mitotic spindle checkpoint activation and Tat-mediated apoptosis in CD4-positive T-lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslyqs7Y%3D&md5=10bc14d982d3dfab4a4855d9becc8642CAS | 24488929PubMed |

Łuksza, M., Queguigner, I., Verlhac, M. H., and Brunet, S. (2013). Rebuilding MTOCs upon centriole loss during mouse oogenesis. Dev. Biol. 382, 48–56.
Rebuilding MTOCs upon centriole loss during mouse oogenesis.Crossref | GoogleScholarGoogle Scholar | 23954884PubMed |

Ma, W., and Viveiros, M. M. (2014). Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization. Mol. Reprod. Dev. 81, 1019–1029.
Depletion of pericentrin in mouse oocytes disrupts microtubule organizing center function and meiotic spindle organization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVykt77E&md5=194b7e51c4519267df9e0e3d4b1c49f5CAS | 25266793PubMed |

Ma, W., Baumann, C., and Viveiros, M. M. (2010). NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes. Dev. Biol. 339, 439–450.
NEDD1 is crucial for meiotic spindle stability and accurate chromosome segregation in mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1aisrg%3D&md5=0b7be767cee8744346245db215a7e31dCAS | 20079731PubMed |

Ma, N., Titus, J., Gable, A., Ross, J. L., and Wadsworth, P. (2011). TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. J. Cell Biol. 195, 87–98.
TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12hurbM&md5=818789b8969b00cd04d9cf0304283ea8CAS | 21969468PubMed |

Manandhar, G., Schatten, H., and Sutovsky, P. (2005). Centrosome reduction during gametogenesis and its significance. Biol. Reprod. 72, 2–13.
Centrosome reduction during gametogenesis and its significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlGr&md5=d9dce9bed14bdac22b132ea28a54f583CAS | 15385423PubMed |

Manetti, F. (2012). LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med. Res. Rev. 32, 968–998.
LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKls7vK&md5=4b7fc6356fa97a2cee2350125407553eCAS | 22886629PubMed |

Manning, A. L., and Compton, D. A. (2008). Structural and regulatory roles of non-motor spindle proteins. Curr. Opin. Cell Biol. 20, 101–106.
Structural and regulatory roles of non-motor spindle proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVWgs7g%3D&md5=822226499d8f418ab6857ad6fb43a443CAS | 18178073PubMed |

Ohashi, K., Nagata, K., Maekawa, M., Ishizaki, T., Narumiya, S., and Mizuno, K. (2000). Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at Threonine 508 within the activation loop. J. Biol. Chem. 275, 3577–3582.
Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at Threonine 508 within the activation loop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVygtL0%3D&md5=0bc34e61ed132fe493d6aa2d7127c17aCAS | 10652353PubMed |

Okamoto, A., Yabuta, N., Mukai, S., Torigata, K., and Nojima, H. (2015). Phosphorylation of CHO1 by Lats1/2 regulates the centrosomal activation of LIMK1 during cytokinesis. Cell Cycle 14, 1568–1582.
Phosphorylation of CHO1 by Lats1/2 regulates the centrosomal activation of LIMK1 during cytokinesis.Crossref | GoogleScholarGoogle Scholar | 25786116PubMed |

Ou, X. H., Xing, F. Q., and Sun, Q. Y. (2010). p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle 9, 4130–4143.
p38α MAPK is a MTOC-associated protein regulating spindle assembly, spindle length and accurate chromosome segregation during mouse oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1ahur0%3D&md5=0067367f14ef1c3a8a0beee875b00bbeCAS | 20948319PubMed |

Prudent, R., Vassal-Stermann, E., Nguyen, C. H., Pillet, C., Martinez, A., Prunier, C., Barette, C., Soleilhac, E., Filhol, O., Beghin, A., Valdameri, G., Honoré, S., Aci-Sèche, S., Grierson, D., Antonipillai, J., Li, R., Pietro, A. D., Dumontet, C., Braguer, D., Florent, J. C., Knapp, S., Bernard, O., and Lafanechère, L. (2012). Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth. Cancer Res. 72, 4429–4439.
Pharmacological inhibition of LIM kinase stabilizes microtubules and inhibits neoplastic growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ygur3K&md5=63922ccde3036551b1e6f05a84e4680aCAS | 22761334PubMed |

Ross-Macdonald, P., de Silva, H., Guo, Q., Xiao, H., Hung, C. Y., Penhallow, B., Markwalder, J., He, L., Attar, R. M., Lin, T. A., Seitz, S., Tilford, C., Wardwell-Swanson, J., and Jackson, D. (2008). Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol. Cancer Ther. 7, 3490–3498.
Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGgsrfJ&md5=6bee83093b8efea0f4ffc53d05f3cd26CAS | 19001433PubMed |

Saskova, A., and Solc, P. (2008). Aurora kinase A controls meiosis I progression in mouse oocytes. Cell Cycle 7, 2368–2376.
Aurora kinase A controls meiosis I progression in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SgtL3J&md5=4ed946f3e80010bd75473b635ac42597CAS | 18677115PubMed |

Schuh, M., and Ellenberg, J. (2007). Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130, 484–498.
Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyntbc%3D&md5=49fd406a91c7d73d9286b7eca4b18952CAS | 17693257PubMed |

Uteng, M., Hentrich, C., Miura, K., Bieling, P., and Surrey, T. (2008). Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles. J. Cell Biol. 182, 715–726.
Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2rurzE&md5=25c33d86ea03d9f54262ec525a0b4f83CAS | 18710923PubMed |

van der Vaart, B., Akhmanova, A., and Straube, A. (2009). Regulation of microtubule dynamic instability. Biochem. Soc. Trans. 37, 1007–1013.
Regulation of microtubule dynamic instability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsL%2FN&md5=a532c04b111fe1d481551a1c28f6d2e6CAS | 19754441PubMed |

Wojcik, E. J., Buckley, R. S., Richard, J., Liu, L., Huckaba, T. M., and Kim, S. (2013). Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 531, 133–149.
Kinesin-5: cross-bridging mechanism to targeted clinical therapy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtl2ksL3F&md5=a43023f3401dfb10bec0e26273ebc541CAS | 23954229PubMed |

Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393, 809–812.
Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktl2jtbo%3D&md5=2c9d5577de08fe016deea1f0998a9541CAS | 9655398PubMed |

Zheng, D. Y., Jiang, X. H., Zhao, J. P., Duan, D. Y., Zhao, H. Y., and Xu, Q. Y. (2013). Subthalamic hGAD65 gene therapy and striatum TH gene transfer in a Parkinson's disease rat model. Neural Plast. 2013, 263287.
Subthalamic hGAD65 gene therapy and striatum TH gene transfer in a Parkinson's disease rat model.Crossref | GoogleScholarGoogle Scholar |