Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Elimination of methylation marks at lysines 4 and 9 of histone 3 (H3K4 and H3K9) of spermatozoa alters offspring phenotype

Serafín Pérez-Cerezales A D , Priscila Ramos-Ibeas A , Angela Lopez-Cardona A B , Eva Pericuesta A , Raúl Fernandez-Gonzalez A , Belen Pintado C and Alfonso Gutiérrez-Adán A
+ Author Affiliations
- Author Affiliations

A Departamento de Reproduccion Animal, INIA, Avda. Puerta de Hierro, n°12, local 10. 28040, Madrid, Spain.

B Grupo de Investigación de Biogénesis, Universidad de Antioquia, Calle 67 Número 53 – 108. 1226, Antioquia, Colombia.

C Servicio de Transgénesis, CNB-CBMSO CSIC, UAM. Calle Nicolás Cabrera, 1. 28049, Madrid, Spain.

D Corresponding author. Email: perez.serafin@inia.es

Reproduction, Fertility and Development 29(4) 740-746 https://doi.org/10.1071/RD15349
Submitted: 27 August 2015  Accepted: 19 November 2015   Published: 18 December 2015

Abstract

The contribution of the contents of spermatozoa to the development of the embryo is currently being considered wider than was previously thought. Recent findings point to the participation of epigenetic marks present in the retained histones of mature spermatozoa on embryo and fetal development. Here we created a novel conditional transgenic mouse that expresses lysine (K) demethylase 1a (Kdm1a) during spermatogenesis when the testicles are subjected to heat stress. Using these animals under these conditions we were able to reduce the methylation level of histone 3 at lysines 4 and 9 (H3K4 and H3K9, respectively) in mature spermatozoa. The offspring of these transgenic mice were followed for correct development and growth after birth. We found that the offspring of males expressing Kdm1a suffered 20% of reabsorptions at Day 15 after implantation (vs 0.3% in the control). In addition, 35% of the offspring sired by these males showed some kind of abnormality (suckling defects, lack of movement coordination, dropping forelimbs, abnormal body curvature, absence of eyes, gigantisms and neuromuscular defects) and 25% died before postnatal Day 21. Some abnormalities were maintained to adulthood. These results show that alteration of epigenetic marks present in the retained histones of mature spermatozoa affect fetal development and have phenotypic consequences in the newborn.

Additional keywords: chromatin, development, epigenetic, gamete.


References

Arpanahi, A., Brinkworth, M., Iles, D., Krawetz, S. A., Paradowska, A., Platts, A. E., Saida, M., Steger, K., Tedder, P., and Miller, D. (2009). Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF-binding sequences. Genome Res. 19, 1338–1349.
Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF-binding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFOntLw%3D&md5=deb53a2dc539720988b6189da0c6d6cfCAS | 19584098PubMed |

Balhorn, R. (1982). A model for the structure of chromatin in mammalian spermatozoa. J. Cell Biol. 93, 298–305.
A model for the structure of chromatin in mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktVamsbo%3D&md5=39a1a292eb105dd9212181a147bab2a8CAS | 7096440PubMed |

Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutiérrez-Adán, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiol. Genomics 32, 264–272.
Epigenetic differences between male and female bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Wjurw%3D&md5=372e387d620adaf5e3ab7bc2deaf4e20CAS | 17986520PubMed |

Boissonnas, C. C., El Abdalaoui, H., Haelewyn, V., Fauque, P., Dupont, J. M., Gut, I., Vaiman, D., Jouannet, P., Tost, J., and Jammes, H. (2010). Specific epigenetic alterations of IGF2–H19 locus in spermatozoa from infertile men. Eur. J. Hum. Genet. 18, 73–80.
Specific epigenetic alterations of IGF2–H19 locus in spermatozoa from infertile men.Crossref | GoogleScholarGoogle Scholar | 19584898PubMed |

Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E. J., Roloff, T. C., Beisel, C., Schübeler, D., Stadler, M. B., and Peters, A. H. F. M. (2010). Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687.
Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFalur8%3D&md5=c4f179b793ff65ca314b1e3d82e4b5dbCAS | 20473313PubMed |

Carrell, D. T. (2012). Epigenetics of the male gamete. Fertil. Steril. 97, 267–274.
Epigenetics of the male gamete.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVerurY%3D&md5=6f26842b9db714f03874fef8297ba25fCAS | 22289286PubMed |

Carrell, D. T., Emery, B. R., and Hammoud, S. (2008). The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome. Int. J. Androl. 31, 537–545.
The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome.Crossref | GoogleScholarGoogle Scholar | 18298569PubMed |

Dahl, J. A., and Collas, P. (2007). A quick and quantitative chromatin immunoprecipitation assay for small cell samples. Front. Biosci. 12, 4925–4931.
A quick and quantitative chromatin immunoprecipitation assay for small cell samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosF2qsrw%3D&md5=be6cd8990ca663b3596c6c47ba5d23c5CAS | 17569620PubMed |

Dix, D. J., Rosario-Herrle, M., Gotoh, H., Mori, C., Goulding, E. H., Barrett, C. V., and Eddy, E. M. (1996). Developmentally regulated expression of Hsp70–2 and a Hsp70–2/lacZ transgene during spermatogenesis. Dev. Biol. 174, 310–321.
Developmentally regulated expression of Hsp70–2 and a Hsp70–2/lacZ transgene during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVSgsbg%3D&md5=f75add28119d1dabe20c03e8c6df4375CAS | 8631503PubMed |

Eddy, E. M. (1999). Role of heat-shock protein HSP70–2 in spermatogenesis. Rev. Reprod. 4, 23–30.
Role of heat-shock protein HSP70–2 in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVeht7s%3D&md5=d7d53a2ddf93eb36eb52dcde9aca0494CAS | 10051099PubMed |

Fernandez-Gonzalez, R., Ramirez, M.A., Pericuesta, E., Calle, A., and Gutiérrez-Adán, A. (2010). Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol. Reprod. 83, 720–727.
Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls77M&md5=23e984dadb63833b7903d3df1c5e29e9CAS | 20650886PubMed |

Gan, Q., Yoshida, T., McDonald, O. G., and Owens, G. K. (2007). Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25, 2–9.
Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvVGjsLg%3D&md5=9bdd42a189a9178270d67194e234a012CAS | 17023513PubMed |

Garcia-Bassets, I., Kwon, Y., Telese, F., Prefontaine, G. G., Hutt, K. R., Cheng, C. S., Ju, B., Ohgi, K. A., Wang, J., Escoubet-Lozach, L., Rose, D. W., Glass, C. K., Fu, X. D., and Rosenfeld, M. G. (2007). Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518.
Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1WltL4%3D&md5=6169d7f33c23bb5045b180630b53e67eCAS | 17289570PubMed |

Gatewood, J. M., Cook, G. R., Balhorn, R., Bradbury, E. M., and Schmid, C. W. (1987). Sequence-specific packaging of DNA in human sperm chromatin. Science 236, 962–964.
Sequence-specific packaging of DNA in human sperm chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFWhsb8%3D&md5=e3f27c189f1582a943e913977b7a2312CAS | 3576213PubMed |

Godmann, M., May, E., and Kimmins, S. (2010). Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ-cell line. PLoS One 5, e12727.
Epigenetic mechanisms regulate stem cell expressed genes Pou5f1 and Gfra1 in a male germ-cell line.Crossref | GoogleScholarGoogle Scholar | 20856864PubMed |

Gusse, M., Sautière, P., Bélaiche, D., and Martinage, A. (1986). Purification and characterisation of nuclear basic proteins of human spermatozoa. Biochim. Biophys. Acta 884, 124–134.
Purification and characterisation of nuclear basic proteins of human spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhvFOj&md5=5bb3210efd3dd1de2a1d67e26c62ea48CAS | 3768407PubMed |

Gutiérrez-Adán, A., and Pintado, B. (2000). Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos. Transgenic Res. 9, 81–89.
Effect of flanking matrix attachment regions on the expression of microinjected transgenes during preimplantation development of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 10951692PubMed |

Gutiérrez-Adán, A., Maga, E. A., Meade, H., Shoemaker, C. F., Medrano, J. F., Anderson, G. B., and Murray, J. D. (1996). Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein. J. Dairy Sci. 79, 791–799.
Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein.Crossref | GoogleScholarGoogle Scholar | 8792278PubMed |

Hammoud, S. S., Nix, D. A., Zhang, H., Purwar, J., Carrell, D. T., and Cairns, B. R. (2009). Distinctive chromatin in human spermatozoa packages genes for embryo development. Nature 460, 473–478.
| 1:CAS:528:DC%2BD1MXnt1Sht7w%3D&md5=c2ccc7d918fa5f510adb39b7504a311bCAS | 19525931PubMed |

Hammoud, S. S., Purwar, J., Pflueger, C., Cairns, B. R., and Carrell, D. T. (2010). Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil. Steril. 94, 1728–1733.
Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1SrtL7K&md5=ba0210b4165435d749efcfbb6d84c13bCAS | 19880108PubMed |

Hammoud, S. S., Nix, D. A., Hammoud, A. O., and Gibson, M. (2011). Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the spermatozoa of infertile men. Hum. Reprod. 26, 2558–2569.
Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the spermatozoa of infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsrzI&md5=09b6d1eb367a642125bab2966ba6dc1dCAS | 21685136PubMed |

Inselman, A. L., Nakamura, N., Brown, P. R., Willis, W. D., Goulding, E. H., and Eddy, E. M. (2010). Heat-shock protein 2 promoter drives Cre expression in spermatocytes of transgenic mice. Genesis 48, 114–120.
Heat-shock protein 2 promoter drives Cre expression in spermatocytes of transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFymtb4%3D&md5=cf3decfe36aec772f25d006b1e4d8810CAS | 20027617PubMed |

Jenkins, T. G., and Carrell, D. T. (2012). The sperm epigenome and potential implications for the developing embryo. Reproduction 143, 727–734.
The sperm epigenome and potential implications for the developing embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFahs78%3D&md5=311c1572c22252d1d1110a656ba63f65CAS | 22495887PubMed |

Kimmins, S., and Sassone-Corsi, P. (2005). Chromatin remodelling and epigenetic features of germ cells. Nature 434, 583–589.
Chromatin remodelling and epigenetic features of germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislCmsr4%3D&md5=be16a4d435786bb519b2b21ceeea2f0bCAS | 15800613PubMed |

Kobayashi, H., Sato, A., Otsu, E., Hiura, H., Tomatsu, C., Utsunomiya, T., Sasaki, H., Yaegashi, N., and Arima, T. (2007). Aberrant DNA methylation of imprinted loci in spermatozoa from oligospermic patients. Hum. Mol. Genet. 16, 2542–2551.
Aberrant DNA methylation of imprinted loci in spermatozoa from oligospermic patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2mtLnO&md5=d47e4cb9f6682ee0c7d596b006b522f2CAS | 17636251PubMed |

Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C. T., Low, H. M., Sung, K. W. K., Rigoutsos, I., Loring, J., and Wei, C. L. (2010). Dynamic changes in the human methylome during differentiation. Genome Res. 20, 320–331.
Dynamic changes in the human methylome during differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlCktbo%3D&md5=dc4cb12f94db65c14e986b3a01515051CAS | 20133333PubMed |

Manikkam, M., Tracey, R., Guerrero-Bosagna, C., and Skinner, M. K. (2013). Plastics-derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8, e55387.
Plastics-derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Cgsr8%3D&md5=b94f98addc0fef1854812d3dcfd80536CAS | 23359474PubMed |

Marques, C. J., Carvalho, F., Sousa, M., and Barros, A. (2004). Genomic imprinting in disruptive spermatogenesis. Lancet 363, 1700–1702.
Genomic imprinting in disruptive spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktF2ns7w%3D&md5=39a2268e17f29646f6ed9a9094246b50CAS | 15158633PubMed |

Marques, C. J., Costa, P., Vaz, B., Carvalho, F., Fernandes, S., Barros, A., and Sousa, M. (2008). Abnormal methylation of imprinted genes in human spermatozoa is associated with oligozoospermia. Mol. Hum. Reprod. 14, 67–74.
Abnormal methylation of imprinted genes in human spermatozoa is associated with oligozoospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsV2ntLs%3D&md5=28cf3da9a886fd730e9add3a02e816ddCAS | 18178607PubMed |

Marques, C. J., Francisco, T., Sousa, S., Carvalho, F., Barros, A., and Sousa, M. (2010). Methylation defects of imprinted genes in human testicular spermatozoa. Fertil. Steril. 94, 585–594.
Methylation defects of imprinted genes in human testicular spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFansLc%3D&md5=a824d1182e72790ac1b84ed722af5303CAS | 19338988PubMed |

Metzger, E., Wissmann, M., Yin, N., Müller, J. M., Schneider, R., Peters, A. H. F. M., Günther, T., Buettner, R., and Schüle, R. (2005). LSD1 demethylates repressive histone marks to promote androgen receptor-dependent transcription. Nature 437, 436–439.
| 1:CAS:528:DC%2BD2MXpvFOrtL4%3D&md5=fc59ebf549902004f38fdb2d0493c3a7CAS | 16079795PubMed |

Miller, D., Brinkworth, M., and Iles, D. (2010). Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301.
Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFKit70%3D&md5=f83a924d1afe6eac8951a3662e5df6c9CAS | 19759174PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., and Umehara, H. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=0f82bff88005aa5c56ef71878f2e0c61CAS | 22722204PubMed |

Oakberg, E. F. (1956). A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ-cell renewal. Am. J. Anat. 99, 391–413.
A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ-cell renewal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG2s%2FkvV2ltw%3D%3D&md5=002fd022ac7b945a3e1dc0de5eb4b7feCAS | 13402725PubMed |

Oliva, R. (2006). Protamines and male infertility. Hum. Reprod. Update 12, 417–435.
Protamines and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Wktbc%3D&md5=021769a12bd0ed6e74e9fb0d1a2c56eeCAS | 16581810PubMed |

Oliva, R., and Ballescà, J. L. (2012). Altered histone retention and epigenetic modifications in the spermatozoa of infertile men. Asian J. Androl. 14, 239–240.
Altered histone retention and epigenetic modifications in the spermatozoa of infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlGqt7k%3D&md5=23777ba18d79483731453718787e12c6CAS | 22057381PubMed |

Ostling, P., Björk, J. K., Roos-Mattjus, P., Mezger, V., and Sistonen, L. (2007). Heat-shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J. Biol. Chem. 282, 7077–7086.
Heat-shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1.Crossref | GoogleScholarGoogle Scholar | 17213196PubMed |

Pei, Y., Wu, Y., and Qin, Y. (2012). Effects of chronic heat stress on the expressions of heat-shock proteins 60, 70, 90, A2 and HSC70 in the rabbit testis. Cell Stress Chaperones 17, 81–87.
Effects of chronic heat stress on the expressions of heat-shock proteins 60, 70, 90, A2 and HSC70 in the rabbit testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgt7jO&md5=11d26de72af64c90bd2e1a91ac84763aCAS | 21830018PubMed |

Pérez-Cerezales, S., Gutiérrez-Adán, A., Martínez-Páramo, S., Beirão, J., and Herráez, M. P. (2011). Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged spermatozoa. Theriogenology 76, 1234–1245.
Altered gene transcription and telomere length in trout embryo and larvae obtained with DNA cryodamaged spermatozoa.Crossref | GoogleScholarGoogle Scholar | 21741697PubMed |

Pérez-Crespo, M., Pintado, B., and Gutiérrez-Adán, A. (2008). Scrotal heat stress effects on sperm viability, sperm DNA integrity and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47.
Scrotal heat stress effects on sperm viability, sperm DNA integrity and the offspring sex ratio in mice.Crossref | GoogleScholarGoogle Scholar | 17474098PubMed |

Rudolph, T., Beuch, S., and Reuter, G. (2013). Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin. Biol. Chem. 394, 1019–1028.
Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFymtb0%3D&md5=41e50a5cf8ed8f2d10c4d66b39b3d297CAS | 23612539PubMed |

Schmittgen, T. D., and Livak, K. J. (2008). Analysing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108.
Analysing real-time PCR data by the comparative CT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=2631c2b2b1241a121f40c7c7f9c099ceCAS | 18546601PubMed |

Scieglinska, D., and Krawczyk, Z. (2015). Expression, function and regulation of the testis-enriched heat-shock HSPA2 gene in rodents and humans. Cell Stress Chaperones 20, 221–235.
Expression, function and regulation of the testis-enriched heat-shock HSPA2 gene in rodents and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSntbjJ&md5=d92f3214de392903ba965b8980e362c4CAS | 25344376PubMed |

Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., Casero, R. A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homologue LSD1. Cell 119, 941–953.
Histone demethylation mediated by the nuclear amine oxidase homologue LSD1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSitg%3D%3D&md5=d2cd57a66aa2503c92ff18234669aedaCAS | 15620353PubMed |

Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., Cohen, T., Xia, J., Suderman, M., Hallett, M., Trasler, J., Peters, A. H., and Kimmins, S. (2015). Disruption of histone methylation in developing spermatozoa impairs offspring health transgenerationally. Science , .
Disruption of histone methylation in developing spermatozoa impairs offspring health transgenerationally.Crossref | GoogleScholarGoogle Scholar | 26449473PubMed |

Song, N., Liu, J., An, S., Nishino, T., Hishikawa, Y., and Koji, T. (2011). Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem. Cytochem. 44, 183–190.
Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GisrjF&md5=60fb68fa6b972f2e2c2c0eae2f895137CAS | 21927517PubMed |

Soubry, A. (2015). Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog. Biophys. Mol. Biol. 118, 79–85.
Epigenetic inheritance and evolution: a paternal perspective on dietary influences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksV2iur0%3D&md5=c4f60a5e25c790c90e927aee9999f824CAS | 25769497PubMed |

Tracey, R., Manikkam, M., Guerrero-Bosagna, C., and Skinner, M. K. (2013). Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod. Toxicol. 36, 104–116.
Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtl2isLY%3D&md5=5d27c08c57d2ca239ab634b8c2110cd4CAS | 23453003PubMed |

van Roijen, H. J., Ooms, M. P., Spaargaren, M. C., Baarends, W. M., Weber, R. F., Grootegoed, J. A., and Vreeburg, J. T. (1998). Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum. Reprod. 13, 1559–1566.
Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkslOlur0%3D&md5=503f78a741a48a1c3761448d897af2d9CAS | 9688392PubMed |

Wang, S., Cheng, C., Tang, P., Chen, C., Chen, H., Lee, Y., and Huang, S. (2013). Differential gene expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology 79, 374–382.e7.
Differential gene expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1KqsrjN&md5=6eb2dc21b09c14f5f9105df7135e88e0CAS | 23154143PubMed |

Wang, S., Cheng, C., Tang, P., Chen, C., Chen, H., Lee, Y., and Huang, S. (2015). Acute heat stress induces differential gene expression in the testes of a broiler-type strain of Taiwan country chickens. PLoS One 10, e0125816.
Acute heat stress induces differential gene expression in the testes of a broiler-type strain of Taiwan country chickens.Crossref | GoogleScholarGoogle Scholar | 25932638PubMed |