Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Changes in aquaporin 5 in the non-ciliated cells of mouse oviduct according to sexual maturation and oestrous cycle

Won Heum Nah A , Yeong Seok Oh A , Jung Hye Hwang B C and M. C. Gye A C
+ Author Affiliations
- Author Affiliations

A Department of Life Science and Institute of Natural Sciences, Hanyang University, Seoul 133-791, Korea.

B Department of Obstetrics and Gynecology, School of Medicine, Hanyang University, Seoul 133-791, Korea.

C Corresponding authors. Emails: hwangjh@hanyang.ac.kr; mcgye@hanyang.ac.kr

*These authors contributed equally to this paper.

Reproduction, Fertility and Development 29(2) 336-344 https://doi.org/10.1071/RD15186
Submitted: 11 May 2015  Accepted: 10 July 2015   Published: 14 August 2015

Abstract

Aquaporin (AQP) water channels play an important role in fluid homeostasis and the control of epithelial cell volume. To understand the oviductal fluid homeostasis, the expression of aqp5 was examined in mouse oviduct. In the oviduct of cycling females, aqp1, aqp3, aqp4, aqp5, aqp6, aqp7, aqp8, and aqp11 mRNA were detected. Of these, expression of aqp5 mRNA increased significantly from the early prepubertal period to puberty. Epithelial AQP5 immunoreactivity was markedly increased during the same period and was most notable in the infundibulum. In immature female mice (3 weeks old), gonadotropin (pregnant mare’s serum gonadotropin (5 IU/head) and human chorionic gonadotropin (5 IU/head), single intraperitoneal injection) significantly increased oviductal aqp5 mRNA and AQP5 immunoreactivity in oviduct epithelia. In adult mouse oviduct epithelia, AQP5 was primarily found in the apical membrane, subapical cytoplasm and basolateral membrane of secretory non-ciliated cells, whereas weak to negligible immunoreactivity was found in β-tubulin-positive ciliated cells. Taking into account the fact that non-ciliated cells are well developed with subapical secretory vesicles as well as endosomes, AQP5 may also participate in the secretion and endocytosis in addition to water movement through non-ciliated secretory cells. AQP5 immunoreactivity was also found in the isthmic muscle and lamina propria beneath the epithelia. In cycling females, oviductal aqp5 mRNA levels were the highest at oestrus and the lowest at di-oestrus. AQP5 immunoreactivity in non-ciliated cells was notable in the infundibulum, where AQP5 immunoreactivity was relatively high at oestrus but low at dioestrus and pro-oestrus, indicating synchrony between aqp5 gene activation and the ovarian cycle. Together, the findings of the present study indicate that aqp5 specific to non-ciliated cells is activated during sexual maturation, supporting fluid homeostasis in mouse oviduct.

Additional keywords: fluid homeostasis, gonadotropin, human chorionic gonadotropin, infundibulum, pregnant mare’s serum gonadotropin, non-ciliated cells.


References

Abe, H. (1996). The mammalian oviductal epithelium: regional variations in cytological and functional aspects of the oviductal secretory cells. Histol. Histopathol. 11, 743–768.
| 1:STN:280:DyaK28vjs12nug%3D%3D&md5=62ea9b43a76f965b3f9780ad129c47d6CAS | 8839764PubMed |

Agre, P. (1997). Molecular physiology of water transport: aquaporin nomenclature workshop. Mammalian aquaporins. Biol. Cell 89, 255–275.
Molecular physiology of water transport: aquaporin nomenclature workshop. Mammalian aquaporins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVeksw%3D%3D&md5=9b3ae38753a5e542c53d62848079344fCAS | 9468596PubMed |

Aralla, M., Borromeo, V., Groppetti, D., Secchi, C., Cremonesi, F., and Arrighi, S. (2009). A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus. Theriogenology 72, 310–321.
A collaboration of aquaporins handles water transport in relation to the estrous cycle in the bitch uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFCnsro%3D&md5=ec76da3742f8f609863c4c0344e09651CAS | 19395011PubMed |

Argraves, W. S., and Morales, C. R. (2004). Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct. Mol. Reprod. Dev. 69, 419–427.
Immunolocalization of cubilin, megalin, apolipoprotein J, and apolipoprotein A-I in the uterus and oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFOlurc%3D&md5=c107767049c8ecdf0678011e3a0c35d5CAS | 15457546PubMed |

Badaut, J., Lasbennes, F., Magistretti, P. J., and Regli, L. (2002). Aquaporins in brain: distribution, physiology, and pathophysiology. J. Cereb. Blood Flow Metab. 22, 367–378.
Aquaporins in brain: distribution, physiology, and pathophysiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1OgsLc%3D&md5=422e75433584f0ad472ef2854ab69674CAS | 11919508PubMed |

Badaut, J., Ashwal, S., and Obenaus, A. (2011). Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc. Dis. 31, 521–531.
Aquaporins in cerebrovascular disease: a target for treatment of brain edema?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslKisLw%3D&md5=15f81dc27ba451ff7e971750b4808d64CAS | 21487216PubMed |

Blandau, R. J. (1978). Comparative aspects of tubal anatomy and physiology as they relate to reconstructive procedures. J. Reprod. Med. 21, 7–15.
| 1:STN:280:DyaE1M%2FgsleltQ%3D%3D&md5=3d1c94362e7ba7ca53206535b2c5350eCAS | 357718PubMed |

Brañes, M. C., Morales, B., Ríos, M., and Villalón, M. J. (2005). Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am. J. Physiol. Cell Physiol. 288, C1048–C1057.
Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium.Crossref | GoogleScholarGoogle Scholar | 15647391PubMed |

Chen, Z., Zhang, Z., Gu, Y., and Bai, C. (2011). Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells. Respir. Physiol. Neurobiol. 176, 110–117.
Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVSrtbo%3D&md5=1b361035c1880e6a2c696d2df842b144CAS | 21315850PubMed |

Chien, L. W., Au, H. K., Xiao, J., and Tzeng, C. R. (2002). Fluid accumulation within the uterine cavity reduces pregnancy rates in women undergoing IVF. Hum. Reprod. 17, 351–356.
Fluid accumulation within the uterine cavity reduces pregnancy rates in women undergoing IVF.Crossref | GoogleScholarGoogle Scholar | 11821277PubMed |

Desantis, S., Zizza, S., Accogli, G., Acone, F., Rossi, R., and Resta, L. (2011). Morphometric and ultrastructural features of the mare oviduct epithelium during oestrus. Theriogenology 75, 671–678.
Morphometric and ultrastructural features of the mare oviduct epithelium during oestrus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7mvFemtA%3D%3D&md5=c7816c5f6e2d4a368e304d74c63199c5CAS | 21111474PubMed |

Eddy, C. A., and Pauerstein, C. J. (1980). Anatomy and physiology of the fallopian tube. Clin. Obstet. Gynecol. 23, 1177–1193.
Anatomy and physiology of the fallopian tube.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M%2FovV2iuw%3D%3D&md5=de8854af8ea04cf0c56f4a3c800accd4CAS | 7004702PubMed |

Gannon, B. J., Warnes, G. M., Carati, C. J., and Verco, C. J. (2000). Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract. J. Smooth Muscle Res. 36, 155–167.
Aquaporin-1 expression in visceral smooth muscle cells of female rat reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlKmsrw%3D&md5=b14b26267d9546152a64a198266b8956CAS | 11286299PubMed |

Ge, Z. H., and Spicer, S. S. (1988). Immunocytochemistry of ion transport mediators in the genital tract of female rodents. Biol. Reprod. 38, 439–452.
Immunocytochemistry of ion transport mediators in the genital tract of female rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Gitrk%3D&md5=e6b0f5118bb91bd6499e1274ba802bc8CAS | 2451938PubMed |

Hinckley, M. D., and Milki, A. A. (2003). Rapid reaccumulation of hydrometra after drainage at embryo transfer in patients with hydrosalpinx. Fertil. Steril. 80, 1268–1271.
Rapid reaccumulation of hydrometra after drainage at embryo transfer in patients with hydrosalpinx.Crossref | GoogleScholarGoogle Scholar | 14607587PubMed |

Huang, H. F., He, R. H., Sun, C. C., Zhang, Y., Meng, Q. X., and Ma, Y. Y. (2006). Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update 12, 785–795.
Function of aquaporins in female and male reproductive systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeisbzL&md5=aa7b8fd5a287b774a976cb825306347aCAS | 16840793PubMed |

Imarai, C. M., Rocha, A., Acuña, C., Garrido, J., Vargas, R., and Cardenas, H. (1998). Endocytosis and MHC class II expression by human oviductal epithelium according to stage of the menstrual cycle. Hum. Reprod. 13, 1163–1168.
Endocytosis and MHC class II expression by human oviductal epithelium according to stage of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktF2htLo%3D&md5=9a388d32f9c5b906ae5d24c85ee84ff2CAS | 9647540PubMed |

Ishibashi, K., Kuwahara, M., Kageyama, Y., Tohsaka, A., Marumo, F., and Sasaki, S. (1997). Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem. Biophys. Res. Commun. 237, 714–718.
Cloning and functional expression of a second new aquaporin abundantly expressed in testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtV2gtrY%3D&md5=28a75719179f9c799e77ee3f20ab1649CAS | 9299432PubMed |

Jiang, X. X., Xu, K. H., Ma, J. Y., Tian, Y. H., Guo, X. Y., Lin, J., and Wu, R. J. (2012). Reduced migration of Ishikawa cells associated with downregulation of aquaporin-5. Oncol. Lett. 4, 257–261.
| 1:CAS:528:DC%2BC38Xht1Sgsr%2FP&md5=5f5c5a679b0d5f4e38fbcd5ac1b4aa52CAS | 22844365PubMed |

Jung, H. J., Park, J. Y., Jeon, H. S., and Kwon, T. H. (2011). Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6, e28492.
Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GgtbbE&md5=292c8ed0ae9a10099f081dfb793ede37CAS | 22145049PubMed |

Kanayama, K., and Osada, H. (2000). Relationship between changes in volume of the oviductal fluid in the ampulla and the descent of ovulated eggs from the ampulla to the isthmus in mice. J. Int. Med. Res. 28, 20–23.
Relationship between changes in volume of the oviductal fluid in the ampulla and the descent of ovulated eggs from the ampulla to the isthmus in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrhvVShtQ%3D%3D&md5=f7059f6dd592b05907c5bbb16e76955dCAS | 10815643PubMed |

Kawedia, J. D., Nieman, M. L., Boivin, G. P., Melvin, J. E., Kikuchi, K., Hand, A. R., Lorenz, J. N., and Menon, A. G. (2007). Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex. Proc. Natl Acad. Sci. USA 104, 3621–3626.
Interaction between transcellular and paracellular water transport pathways through aquaporin 5 and the tight junction complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWku78%3D&md5=470d6edddb8b6889eccf78545b9c03edCAS | 17360692PubMed |

Kobayashi, M., Takahashi, E., Miyagawa, S., Watanabe, H., and Iguchi, T. (2006). Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells 11, 1133–1143.
Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFals7fF&md5=dea1cb9fa5376232f553773e4c1a29e3CAS | 16999734PubMed |

Komatsu, M., and Fujita, H. (1978). Electron-microscopic studies on the development and aging of the oviduct epithelium of mice. Anat. Embryol. (Berl.) 152, 243–259.
Electron-microscopic studies on the development and aging of the oviduct epithelium of mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c7osFSktQ%3D%3D&md5=c108515328cc949f62fe438c98a03a52CAS | 655432PubMed |

Krane, C. M. (2001). Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation. J. Biol. Chem. 276, 23 413–23 420.
Salivary acinar cells from aquaporin 5-deficient mice have decreased membrane water permeability and altered cell volume regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVWjsb8%3D&md5=aea8c4364c08995a3593bd194c89dc51CAS |

Krane, C. M., Fortner, C. N., Hand, A. R., McGraw, D. W., Lorenz, J. N., Wert, S. E., Towne, J. E., Paul, R. J., Whitsett, J. A., and Menon, A. G. (2001). Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation. Proc. Natl Acad. Sci. USA 98, 14 114–14 119.
Aquaporin 5-deficient mouse lungs are hyperresponsive to cholinergic stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyms78%3D&md5=583432cb168b27a744cec49a6285a328CAS |

Kurita, T., Cooke, P. S., and Cunha, G. R. (2001). Epithelial–stromal tissue interaction in paramesonephric (Müllerian) epithelial differentiation. Dev. Biol. 240, 194–211.
Epithelial–stromal tissue interaction in paramesonephric (Müllerian) epithelial differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegt7w%3D&md5=66ca34fa6833cca9e7c8007b559fb84fCAS | 11784056PubMed |

Leese, H. J. (1988). The formation and function of oviduct fluid. J. Reprod. Fertil. 82, 843–856.
The formation and function of oviduct fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3gtVWitA%3D%3D&md5=3c0758c4e403edde24c76153b7b0d2aaCAS | 3283349PubMed |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S. L., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFCis7g%3D&md5=722eb63ceb4d70d2a35b095b0e8388faCAS | 18154692PubMed |

Lu, S., Peng, H., Zhang, H., Zhang, L., Cao, Q., Li, R., Zhang, Y., Yan, L., Duan, E., and Qiao, J. (2013). Excessive intrauterine fluid cause aberrant implantation and pregnancy outcome in mice. PLoS One 8, e78446.
Excessive intrauterine fluid cause aberrant implantation and pregnancy outcome in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSjsrrL&md5=058600bc0d4068223d60ee03fb2c8281CAS | 24194934PubMed |

Ma, T. (1999). Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 274, 20 071–20 074.
Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzivFSjsQ%3D%3D&md5=54f47787a8822473bc7a4989e1cab62fCAS |

Ma, T., Yang, B., and Verkman, A. S. (1997). Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem. Biophys. Res. Commun. 240, 324–328.
Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsFWntL0%3D&md5=fec3cc68f3c07487b1152b1b6fda1cfcCAS | 9388476PubMed |

Matsuki, M., Hashimoto, S., Shimono, M., Murakami, M., Fujita-Yoshigaki, J., Furuyama, S., and Sugiya, H. (2005). Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J. Membr. Biol. 203, 119–126.
Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVajtrc%3D&md5=32c022aa149a21a776d082bfe75f77fdCAS | 15986091PubMed |

Mobasheri, A., Wray, S., and Marples, D. (2005). Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J. Mol. Histol. 36, 1–14.
Distribution of AQP2 and AQP3 water channels in human tissue microarrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2gtb0%3D&md5=2e56a8b7e218cd087e863c57928d93d9CAS | 15703994PubMed |

Nejsum, L. N., Kwon, T. H., Jensen, U. B., Fumagalli, O., Frokiaer, J., Krane, C. M., Menon, A. G., King, L. S., Agre, P. C., and Nielsen, S. (2002). Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc. Natl Acad. Sci. USA 99, 511–516.
Functional requirement of aquaporin-5 in plasma membranes of sweat glands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1CqsA%3D%3D&md5=2e1503cf0f2b058c72ee113ced243d5bCAS | 11773623PubMed |

Okada, A., Ohta, Y., Inoue, S., Hiroi, H., Muramatsu, M., and Iguchi, T. (2003). Expression of estrogen, progesterone and androgen receptors in the oviduct of developing, cycling and pre-implantation rats. J. Mol. Endocrinol. 30, 301–315.
Expression of estrogen, progesterone and androgen receptors in the oviduct of developing, cycling and pre-implantation rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslCgs7g%3D&md5=92a0f986f995df8336beba2dda1a2f68CAS | 12790801PubMed |

Okada, A., Ohta, Y., Brody, S. L., and Iguchi, T. (2004a). Epithelial c-jun and c-fos are temporally and spatially regulated by estradiol during neonatal rat oviduct differentiation. J. Endocrinol. 182, 219–227.
Epithelial c-jun and c-fos are temporally and spatially regulated by estradiol during neonatal rat oviduct differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFOgt7k%3D&md5=c3871c02c42fd9cf6bdd39dcbef2d7f5CAS | 15283682PubMed |

Okada, A., Ohta, Y., Brody, S. L., Watanabe, H., Krust, A., Chambon, P., and Iguchi, T. (2004b). Role of foxj1 and estrogen receptor alpha in ciliated epithelial cell differentiation of the neonatal oviduct. J. Mol. Endocrinol. 32, 615–625.
Role of foxj1 and estrogen receptor alpha in ciliated epithelial cell differentiation of the neonatal oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslWjt7w%3D&md5=845b18c5da2bad3703b579537b981675CAS | 15171704PubMed |

Richard, C., Gao, J., Brown, N., and Reese, J. (2003). Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144, 1533–1541.
Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVegtrk%3D&md5=c9aa7ad4d8d1d32bc5a82fa3e49e7fbcCAS | 12639938PubMed |

Satoh, K., Seo, Y., Matsuo, S., Karabasil, M. R., Matsuki-Fukushima, M., Nakahari, T., and Hosoi, K. (2012). Roles of AQP5/AQP5–G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells. Pflugers Arch. 464, 375–389.
Roles of AQP5/AQP5–G103D in carbamylcholine-induced volume decrease and in reduction of the activation energy for water transport by rat parotid acinar cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlyns7zM&md5=55fbede2555a2f3561e1530e43920e70CAS | 22903161PubMed |

Shen, Y., Wang, X., Wang, Y., Wang, X., Chen, Z., Jin, M., and Bai, C. (2012). Lipopolysaccharide decreases aquaporin 5, but not aquaporin 3 or aquaporin 4, expression in human primary bronchial epithelial cells. Respirology 17, 1144–1149.
Lipopolysaccharide decreases aquaporin 5, but not aquaporin 3 or aquaporin 4, expression in human primary bronchial epithelial cells.Crossref | GoogleScholarGoogle Scholar | 22809117PubMed |

Sidhaye, V. K., Chau, E., Srivastava, V., Sirimalle, S., Balabhadrapatruni, C., Aggarwal, N. R., D’Alessio, F. R., Robinson, D. N., and King, L. S. (2012). A novel role for aquaporin-5 in enhancing microtubule organization and stability. PLoS One 7, e38717.
A novel role for aquaporin-5 in enhancing microtubule organization and stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVejtLs%3D&md5=27ecce0e4ffa69d3afe76767116a0f37CAS | 22715407PubMed |

Skowronski, M. T., Kwon, T. H., and Nielsen, S. (2009). Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system. J. Histochem. Cytochem. 57, 61–67.
Immunolocalization of aquaporin 1, 5, and 9 in the female pig reproductive system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1ahtQ%3D%3D&md5=9e6054cd322fc8ff36c7f3c6f7cde408CAS | 18824632PubMed |

Skowronski, M. T., Skowronska, A., and Nielsen, S. (2011). Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy. J. Histochem. Cytochem. 59, 419–427.
Fluctuation of aquaporin 1, 5, and 9 expression in the pig oviduct during the estrous cycle and early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOlsL8%3D&md5=88ddd40811706672e0526da85d361819CAS | 21411812PubMed |

Skowronski, M. T., Frackowiak, L., and Skowronska, A. (2012). The expression of aquaporin 1 and 5 in uterine leiomyomata in premenopausal women: a preliminary study. Reprod. Biol. 12, 81–89.
The expression of aquaporin 1 and 5 in uterine leiomyomata in premenopausal women: a preliminary study.Crossref | GoogleScholarGoogle Scholar | 22472942PubMed |

Steinfeld, S., Cogan, E., King, L. S., Agre, P., Kiss, R., and Delporte, C. (2001). Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren’s syndrome patients. Lab. Invest. 81, 143–148.
Abnormal distribution of aquaporin-5 water channel protein in salivary glands from Sjogren’s syndrome patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivV2mtbY%3D&md5=167b32f26ec706d21759f4877bb3304fCAS | 11232635PubMed |

Strandell, A., and Lindhard, A. (2002). Why does hydrosalpinx reduce fertility? The importance of hydrosalpinx fluid. Hum. Reprod. 17, 1141–1145.
Why does hydrosalpinx reduce fertility? The importance of hydrosalpinx fluid.Crossref | GoogleScholarGoogle Scholar | 11980729PubMed |

Verkman, A. S. (2012). Aquaporins in clinical medicine. Annu. Rev. Med. 63, 303–316.
Aquaporins in clinical medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisleksbY%3D&md5=56213345b213ab742f2ce7b7177dcceeCAS | 22248325PubMed |

Yamamura, Y., Aota, K., Yamanoi, T., Kani, K., Takano, H., Momota, Y., Motegi, K., and Azuma, M. (2012a). DNA demethylating agent decitabine increases AQP5 expression and restores salivary function. J. Dent. Res. 91, 612–617.
DNA demethylating agent decitabine increases AQP5 expression and restores salivary function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVansbjE&md5=49b6a7e2ea4629a37f18242f9b719cf1CAS | 22522773PubMed |

Yamamura, Y., Motegi, K., Kani, K., Takano, H., Momota, Y., Aota, K., Yamanoi, T., and Azuma, M. (2012b). TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation. J. Cell. Mol. Med. 16, 1766–1775.
TNF-α inhibits aquaporin 5 expression in human salivary gland acinar cells via suppression of histone H4 acetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCnu73N&md5=4fab63495141a7cd6c2c3b713abb71a9CAS | 21973049PubMed |

Yamanouchi, H., Umezu, T., and Tomooka, Y. (2010). Reconstruction of oviduct and demonstration of epithelial fate determination in mice. Biol. Reprod. 82, 528–533.
Reconstruction of oviduct and demonstration of epithelial fate determination in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVekurc%3D&md5=b864eb6ad842bee40a2b265b1f72a52eCAS | 19906687PubMed |

Yasui, M., Hazama, A., Kwon, T. H., Nielsen, S., Guggino, W. B., and Agre, P. (1999). Rapid gating and anion permeability of an intracellular aquaporin. Nature 402, 184–187.
Rapid gating and anion permeability of an intracellular aquaporin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVektLg%3D&md5=d0133930e01298dc3bf115e8d2724a60CAS | 10647010PubMed |

Zhang, Z., Chen, Z., Song, Y., Zhang, P., Hu, J., and Bai, C. (2010). Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer. J. Pathol. 221, 210–220.
Expression of aquaporin 5 increases proliferation and metastasis potential of lung cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKju74%3D&md5=6e79cd08c4320694eddb8e692f4c1da1CAS | 20455256PubMed |

Zhang, H., Zhang, Y., Zhao, H., Zhang, Y., Chen, Q., Peng, H., Lei, L., Qiao, J., Shi, J., Cao, Z., Duan, E., and Jin, Y. (2013). Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins. PLoS One 8, e63823.
Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.Crossref | GoogleScholarGoogle Scholar | 23717491PubMed |

Zhang, Y., Chen, Q., Zhang, H., Wang, Q., Li, R., Jin, Y., Wang, H., Ma, T., Qiao, J., and Duan, E. (2015). Aquaporin-dependent excessive intrauterine fluid accumulation is a major contributor in hyperestrogen induced aberrant embryo implantation. Cell Res. 25, 139–142.
Aquaporin-dependent excessive intrauterine fluid accumulation is a major contributor in hyperestrogen induced aberrant embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVSqtrzL&md5=a2834b981710a5da6b303d0bec9b62f8CAS | 25342561PubMed |