Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Potential effects of interferon regulatory factor 4 in a murine model of polyinosinic-polycytidylic acid-induced embryo resorption

Jing Wang A , Tailang Yin A , Yanqi Wen A , Fuju Tian B , Xiaojun He A , Danni Zhou A , Yi Lin B C and Jing Yang A C
+ Author Affiliations
- Author Affiliations

A Department of Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, P. R. China.

B Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

C Corresponding authors. Email: dryangjing108@163.com; yilinonline@126.com

Reproduction, Fertility and Development 28(10) 1631-1641 https://doi.org/10.1071/RD14499
Submitted: 15 December 2014  Accepted: 15 March 2015   Published: 15 April 2015

Abstract

Interferon regulatory factor (IRF) 4 has been reported to modulate Toll-like receptor (TLR) signalling. Polyinosinic-polycytidylic acid (poly(I:C)) can be specifically recognised by TLR3, triggering the innate immune response and subsequently resulting in pregnancy loss. In the present study, poly(I:C) was administered to mice with or without TLR3 blockade. Chemokine (C-X-C motif) receptor 4 (CXCR4) expression was measured with or without chemokine (C-X-C motif) ligand 12 (CXCL12) inhibition. In cultured murine splenic mononuclear cells, IRF4 was knocked down by a specific short interference (si) RNA. IRF4 mRNA and protein levels and T helper (Th) 17 cell frequencies in the poly(I:C)-treated group were significantly higher than in the phosphate-buffered saline (PBS)-treated control group, and were correlated with a significantly higher embryo resorption rate. Interleukin (IL)-17A and IL-21 levels were markedly lower in the IRF4 siRNA-treated group than in the non-specific siRNA- or vehicle control-treated groups. The CXCR4+ cell frequency was significantly higher among IRF4+ uterine mononuclear and granular cells (UMGCs) compared with IRF4 cells. Inhibition of CXCL12 significantly abrogated poly(I:C)-induced increases in the frequency of IRF4+CXCR4+ cells in UMGCs. IRF4 might play a critical role in TLR3 signalling, which mediates Th17 cell activation and upregulates the expression of IL-17A and IL-21, which results in pregnancy loss. CXCL12 may modulate IRF4+CXCR4+ cell migration at the fetomaternal interface. TLR3 and IRF4 blockade could potentially prevent spontaneous abortion under certain conditions.

Additional keywords: animal model, signal transduction, Th17 cell, Toll-like receptor 3.


References

Ahyi, A. N., Chang, H. C., Dent, A. L., Nutt, S. L., and Kaplan, M. H. (2009). IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J. Immunol. 183, 1598–1606.
IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslCkurs%3D&md5=d4c484f1d43f5891938bd66ba8ef60e5CAS | 19592658PubMed |

Aldinucci, D., Celegato, M., Borghese, C., Colombatti, A., and Carbone, A. (2011). IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion. Br. J. Haematol. 152, 182–190.
IRF4 silencing inhibits Hodgkin lymphoma cell proliferation, survival and CCL5 secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVGjtrY%3D&md5=81abd784b3874b67c9d7c0705e7fb27aCAS | 21114485PubMed |

Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738.
Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFegsL0%3D&md5=dbfa42df7587fda53ab360922d88c2daCAS | 11607032PubMed |

Batten, M., Kljavin, N. M., Li, J., Walter, M. J., de Sauvage, F. J., and Ghilardi, N. (2008). IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells. J. Immunol. 180, 2752–2756.
IL-27 is a potent inducer of IL-10 but not FoxP3 in murine T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1Oltb0%3D&md5=edca25c8f8bba8bcb7aad57f5b3a8799CAS | 18292493PubMed |

Bettelli, E., Korn, T., and Kuchroo, V. K. (2007). Th17: the third member of the effector T cell trilogy. Curr. Opin. Immunol. 19, 652–657.
Th17: the third member of the effector T cell trilogy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCksb%2FO&md5=b54993c4f6f01c9f96ca80aabcf47aecCAS | 17766098PubMed |

Biswas, P. S., Bhagat, G., and Pernis, A. B. (2010). IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis? Immunol. Rev. 233, 79–96.
IRF4 and its regulators: evolving insights into the pathogenesis of inflammatory arthritis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslarurg%3D&md5=6d0f0213a5027c444715233b7bb861eaCAS | 20192994PubMed |

Brüstle, A., Heink, S., Huber, M., Rosenplänter, C., Stadelmann, C., Yu, P., Arpaia, E., Mak, T. W., Kamradt, T., and Lohoff, M. (2007). The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966.
The development of inflammatory TH-17 cells requires interferon-regulatory factor 4.Crossref | GoogleScholarGoogle Scholar | 17676043PubMed |

Chen, W., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N., McGrady, G., and Wahl, S. M. (2003). Conversion of peripheral CD4+CD25– naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886.
Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFaktLg%3D&md5=a16dbfe079a2034b1dcd6acceed99fa9CAS | 14676299PubMed |

Chen, Q., Yang, W., Gupta, S., Biswas, P., Smith, P., Bhagat, G., and Pernis, A. B. (2008). IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity 29, 899–911.
IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlymsQ%3D%3D&md5=192415bad3cd85adfa4bb8822ee1e66bCAS | 19062315PubMed |

Chung, Y., Chang, S. H., Martinez, G. J., Yang, X. O., Nurieva, R., Kang, H. S., Ma, L., Watowich, S. S., Jetten, A. M., Tian, Q., and Dong, C. (2009). Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587.
Critical regulation of early Th17 cell differentiation by interleukin-1 signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXls1Sqsr0%3D&md5=f11df6a1c1089ebf75b78e81e2532a56CAS | 19362022PubMed |

Gabriele, L., Fragale, A., Borghi, P., Sestili, P., Stellacci, E., Venditti, M., Schiavoni, G., Sanchez, M., Belardelli, F., and Battistini, A. (2006). IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. J. Leukoc. Biol. 80, 1500–1511.
IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSisLfJ&md5=63afe6db93146cf7c317fa5e52bd9fc3CAS | 16966383PubMed |

Gay, N. J., and Gangloff, M. (2007). Structure and function of Toll receptors and their ligands. Annu. Rev. Biochem. 76, 141–165.
Structure and function of Toll receptors and their ligands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVehtb7J&md5=86d503431d7ee3312ec77819f75d3ae6CAS | 17362201PubMed |

Honma, K., Udono, H., Kohno, T., Yamamoto, K., Ogawa, A., Takemori, T., Kumatori, A., Suzuki, S., Matsuyama, T., and Yui, K. (2005). Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS. Proc. Natl Acad. Sci. USA 102, 16 001–16 006.
Interferon regulatory factor 4 negatively regulates the production of proinflammatory cytokines by macrophages in response to LPS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wqsr7L&md5=5c778fb8ba08ea18a2974166f8d17329CAS |

Huber, M., Brüstle, A., Reinhard, K., Guralnik, A., Walter, G., Mahiny, A., von Löw, E., and Lohoff, M. (2008). IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype. Proc. Natl Acad. Sci. USA 105, 20 846–20 851.
IRF4 is essential for IL-21-mediated induction, amplification, and stabilization of the Th17 phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFSntg%3D%3D&md5=7ef0be87b49146b1e78506f8a7a591e2CAS |

Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jäger, A., Strom, T. B., Oukka, M., and Kuchroo, V. K. (2007). IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells. Nature 448, 484–487.
IL-21 initiates an alternative pathway to induce proinflammatory Th17 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFajurw%3D&md5=ca196e7bd8e9df574d5fcb61ad0e78bfCAS | 17581588PubMed |

Lin, Y., Zeng, Y., Zhao, J., Zeng, S., Huang, J., Feng, Z., Di, J., and Zhan, M. (2004). Murine CD45+CD86+ cells isolated from para-aortic lymph nodes in an abortion-prone model. J. Reprod. Immunol. 64, 133–143.
Murine CD45+CD86+ cells isolated from para-aortic lymph nodes in an abortion-prone model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKksb%2FI&md5=545dae61cfa62a04e5afef8035dec384CAS | 15596232PubMed |

Lin, Y., Ren, L., Wang, W., Di, J., Zeng, S., and Saito, S. (2009a). Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice. J. Reprod. Immunol. 82, 12–23.
Effect of TLR3 and TLR7 activation in uterine NK cells from non-obese diabetic (NOD) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnP&md5=a8686051460c64f171b899a468f4bcfcCAS | 19560213PubMed |

Lin, Y., Wang, H., Wang, W., Zeng, S., Zhong, Y., and Li, D.-J. (2009b). Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2+ISG20+ natural killer-cell transfer. Reproduction 137, 943–955.
Prevention of embryo loss in non-obese diabetic mice using adoptive ITGA2+ISG20+ natural killer-cell transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgsbc%3D&md5=b01e78468fbc09339fc8d9f23a511e2dCAS | 19321657PubMed |

Lin, Y., Wang, W., Jin, H., Zhong, Y., Di, J., Zeng, S., and Saito, S. (2009c). Comparison of murine thymic stromal lymphopoietin- and polyinosinic polycytidylic acid-mediated placental dendritic cell activation. J. Reprod. Immunol. 79, 119–128.
Comparison of murine thymic stromal lymphopoietin- and polyinosinic polycytidylic acid-mediated placental dendritic cell activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFKisbY%3D&md5=d070f8d57a45d62d443b4b06548fb1cdCAS | 19081639PubMed |

Lin, Y., Xu, L., Jin, H., Zhong, Y., Di, J., and Lin, Q. (2009d). CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in NOD mice. Fertil. Steril. 91, 2687–2696.
CXCL12 enhances exogenous CD4+CD25+ T cell migration and prevents embryo loss in NOD mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmsLbK&md5=32b547387cc23d2f755aadad48f834adCAS | 18384776PubMed |

Lin, Y., Liu, X., Shan, B., Wu, J., Sharma, S., and Sun, Y. (2014). Prevention of CpG-induced pregnancy disruption by adoptive transfer of in vitro-induced regulatory T cells. PLoS ONE 9, e94702.
Prevention of CpG-induced pregnancy disruption by adoptive transfer of in vitro-induced regulatory T cells.Crossref | GoogleScholarGoogle Scholar | 24714634PubMed |

Lu, R. (2008). Interferon regulatory factor 4 and 8 in B-cell development. Trends Immunol. 29, 487–492.
Interferon regulatory factor 4 and 8 in B-cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCksL%2FE&md5=a3f215bcf7c9cb34cccb300d02b9440eCAS | 18775669PubMed |

Lubberts, E., Koenders, M. I., Oppers-Walgreen, B., van den Bersselaar, L., Coenen-de Roo, C. J., Joosten, L. A., and van den Berg, W. B. (2004). Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50, 650–659.
Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFeiu70%3D&md5=2308ffd288f038735e0a9932928698dfCAS | 14872510PubMed |

Mudter, J., Yu, J., Zufferey, C., Brüstle, A., Wirtz, S., Weigmann, B., Hoffman, A., Schenk, M., Galle, P. R., Lehr, H. A., Mueller, C., Lohoff, M., and Neurath, M. F. (2011). IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo. Inflamm. Bowel Dis. 17, 1343–1358.
IRF4 regulates IL-17A promoter activity and controls RORγt-dependent Th17 colitis in vivo.Crossref | GoogleScholarGoogle Scholar | 21305677PubMed |

Murphy, K. M., and Reiner, S. L. (2002). The lineage decisions of helper T cells. Nat. Rev. Immunol. 2, 933–944.
The lineage decisions of helper T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFKnu7g%3D&md5=0aec7a85874a6ea2a5cb77294c4d3c42CAS | 12461566PubMed |

National Research Council (US) Institute for Laboratory Animal Research (1996). ‘Guide for the Care and Use of Laboratory Animals.’ (National Academies Press: Washington, D. C.)

Nutt, S. L., and Tarlinton, D. M. (2011). Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat. Immunol. 12, 472–477.
Germinal center B and follicular helper T cells: siblings, cousins or just good friends?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtF2luro%3D&md5=c77216b8ff3b8a194037507bf87df57aCAS | 21739669PubMed |

Ogasawara, M., Aoki, K., Katano, K., Aoyama, T., Kajiura, S., and Suzumori, K. (1999). Prevalence of autoantibodies in patients with recurrent miscarriages. Am. J. Reprod. Immunol. 41, 86–90.
Prevalence of autoantibodies in patients with recurrent miscarriages.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7pslyltg%3D%3D&md5=42289cae34202a9946d0d9c8db75d8a5CAS | 10097791PubMed |

Ozato, K., Tailor, P., and Kubota, T. (2007). The interferon regulatory factor family in host defense: mechanism of action. J. Biol. Chem. 282, 20 065–20 069.
The interferon regulatory factor family in host defense: mechanism of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFWntrw%3D&md5=b15c68979e84c974fe59b347661f82e2CAS |

Sun, Y., Qin, X., Shan, B., Wang, W., Zhu, Q., Sharma, S., Wu, J., and Lin, Y. (2013). Differential effects of the CpG–TLR9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls. Fertil. Steril. 99, 1759–1767.
Differential effects of the CpG–TLR9 axis on pregnancy outcome in nonobese diabetic mice and wild-type controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOlu70%3D&md5=f8affe3f6e8f7bdd3f908102886d13b2CAS | 23414919PubMed |

Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14.
Toll-like receptors in innate immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKru77P&md5=ef7674305d6454dbd9116f23d0342055CAS | 15585605PubMed |

Thaxton, J. E., Romero, R., and Sharma, S. (2009). TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J. Immunol. 183, 1144–1154.
TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotFWgs78%3D&md5=c505c89241173f18ec737808a26ad097CAS | 19561095PubMed |

Tominaga, N., Ohkusu-Tsukada, K., Udono, H., Abe, R., Matsuyama, T., and Yui, K. (2003). Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4. Int. Immunol. 15, 1–10.
Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVyhtA%3D%3D&md5=1b1ec56bf2634a16ad983ff8c8046a7cCAS | 12502720PubMed |

Tsuboi, K., Iida, S., Inagaki, H., Kato, M., Hayami, Y., Hanamura, I., Miura, K., Harada, S., Kikuchi, M., Komatsu, H., Banno, S., Wakita, A., Nakamura, S., Eimoto, T., and Ueda, R. (2000). MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia 14, 449–456.
MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1aktrY%3D&md5=8b0339b5d5bf809baf4ec36fd0bce525CAS | 10720141PubMed |

Van, L. P., Bardel, E., Gregoire, S., Vanoirbeek, J., Schneider, E., Dy, M., and Thieblemont, N. (2011). Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms. Eur. J. Immunol. 41, 1992–1999.
Treatment with the TLR7 agonist R848 induces regulatory T-cell-mediated suppression of established asthma symptoms.Crossref | GoogleScholarGoogle Scholar | 21480211PubMed |

Weaver, C. T., Hatton, R. D., Mangan, P. R., and Harrington, L. E. (2007). IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852.
IL-17 family cytokines and the expanding diversity of effector T cell lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlans7s%3D&md5=55d24effaeb80c32c47ca3b288c99473CAS | 17201677PubMed |