Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo's potential, affecting adult health
Tom P. Fleming A F , Adam J. Watkins A E , Congshan Sun A C , Miguel A. Velazquez A D , Neil R. Smyth A and Judith J. Eckert BA Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, UK.
B Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK.
C Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.
D School of Agriculture, Food and Rural Development, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
E Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
F Corresponding author. Email: tpf@soton.ac.uk
Reproduction, Fertility and Development 27(4) 684-692 https://doi.org/10.1071/RD14455
Submitted: 20 November 2014 Accepted: 3 February 2015 Published: 3 March 2015
Abstract
Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and ‘decisions’ made by embryos to optimise their own development, but with lasting consequences.
Additional keywords: blastocyst, cardiometabolic disease, endocytosis, mammalian target of rapamycin complex signalling, primitive endoderm, trophectoderm.
References
Artus, J., Piliszek, A., and Hadjantonakis, A. K. (2011). The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev. Biol. 350, 393–404.| The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKnt70%3D&md5=bd0864c6f3d3d236eb00a42658aad4f3CAS | 21146513PubMed |
Assémat, E., Vinot, S., Gofflot, F., Linsel-Nitschke, P., Illien, F., Châtelet, F., Verroust, P., Louvet-Vallée, S., Rinninger, F., and Kozyraki, R. (2005). Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo. Biol. Reprod. 72, 1079–1086.
| Expression and role of cubilin in the internalization of nutrients during the peri-implantation development of the rodent embryo.Crossref | GoogleScholarGoogle Scholar | 15616221PubMed |
Barker, D. J., and Thornburg, K. L. (2013). The obstetric origins of health for a lifetime. Clin. Obstet. Gynecol. 56, 511–519.
| The obstetric origins of health for a lifetime.Crossref | GoogleScholarGoogle Scholar | 23787713PubMed |
Barker, D. J., Osmond, C., Kajantie, E., and Eriksson, J. G. (2009). Growth and chronic disease: findings in the Helsinki Birth Cohort. Ann. Hum. Biol. 36, 445–458.
| Growth and chronic disease: findings in the Helsinki Birth Cohort.Crossref | GoogleScholarGoogle Scholar | 19562567PubMed |
Beckman, D. A., Lloyd, J. B., and Brent, R. L. (1997). Investigations into mechanisms of amino acid supply to the rat embryo using whole-embryo culture. Int. J. Dev. Biol. 41, 315–318.
| 1:CAS:528:DyaK2sXksVGns7s%3D&md5=9dddc4cac65a01e6cc84565937d26152CAS | 9184340PubMed |
Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141, 563–570.
| Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCju7Y%3D&md5=e9e64644b8176cd07bbaa434fe21ae14CAS | 21339284PubMed |
Bloomfield, F. H., Jaquiery, A. L., and Oliver, M. H. (2013). Nutritional regulation of fetal growth. Nestlé Nutr. Inst. Workshop Ser. 74, 79–89.
| Nutritional regulation of fetal growth.Crossref | GoogleScholarGoogle Scholar | 23887106PubMed |
Bohdanowicz, M., and Grinstein, S. (2013). Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol. Rev. 93, 69–106.
| Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKnsrY%3D&md5=c721070f29c30c4764068281ceaa66e0CAS | 23303906PubMed |
Braun, K., and Champagne, F. A. (2014). Paternal influences on offspring development: behavioural and epigenetic pathways. J. Neuroendocrinol. 26, 697–706.
| Paternal influences on offspring development: behavioural and epigenetic pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCjur7N&md5=cb59c16eb92fb65bd658dc520fbb5f69CAS | 25039356PubMed |
Bromfield, J. J., Schjenken, J. E., Chin, P. Y., Care, A. S., Jasper, M. J., and Robertson, S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl Acad. Sci. USA 111, 2200–2205.
| Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFOqtLc%3D&md5=3da9e7ca9953ead82f857bdcf9f0691eCAS | 24469827PubMed |
Cai, K. Q., Caslini, C., Capo-chichi, C. D., Slater, C., Smith, E. R., Wu, H., Klein-Szanto, A. J., Godwin, A. K., and Xu, X. X. (2009). Loss of GATA4 and GATA6 expression specifies ovarian cancer histological subtypes and precedes neoplastic transformation of ovarian surface epithelia. PLoS ONE 4, e6454.
| Loss of GATA4 and GATA6 expression specifies ovarian cancer histological subtypes and precedes neoplastic transformation of ovarian surface epithelia.Crossref | GoogleScholarGoogle Scholar | 19649254PubMed |
Caslini, C., Capo-chichi, C. D., Roland, I. H., Nicolas, E., Yeung, A. T., and Xu, X. X. (2006). Histone modifications silence the GATA transcription factor genes in ovarian cancer. Oncogene 25, 5446–5461.
| Histone modifications silence the GATA transcription factor genes in ovarian cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVyhsLs%3D&md5=21bfc880caec91c3acfba7d8e58af6d9CAS | 16607277PubMed |
Coan, P. M., Vaughan, O. R., McCarthy, J., Mactier, C., Burton, G. J., Constancia, M., and Fowden, A. L. (2011). Dietary composition programmes placental phenotype in mice. J. Physiol. 589, 3659–3670.
| Dietary composition programmes placental phenotype in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsl2qu74%3D&md5=bea76e1a036d8ec075367432b3d99741CAS | 21624969PubMed |
Dowling, R. J., Topisirovic, I., Fonseca, B. D., and Sonenberg, N. (2010). Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys. Acta 1804, 433–439.
| Dissecting the role of mTOR: lessons from mTOR inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1ynurc%3D&md5=1973e89b46cc9909660fa2c31bae0c4fCAS | 20005306PubMed |
Dunglison, G. F., and Kaye, P. L. (1995). Endocytosis in mouse blastocysts: characterization and quantification of the fluid phase component. Mol. Reprod. Dev. 41, 225–231.
| Endocytosis in mouse blastocysts: characterization and quantification of the fluid phase component.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVGqu78%3D&md5=551c2aba4e07d2e28be8a7879a62c01eCAS | 7544593PubMed |
Dunglison, G. F., Jane, S. D., McCaul, T. F., Chad, J. E., Fleming, T. P., and Kaye, P. L. (1995). Stimulation of endocytosis in mouse blastocysts by insulin: a quantitative morphological analysis. J. Reprod. Fertil. 105, 115–123.
| Stimulation of endocytosis in mouse blastocysts by insulin: a quantitative morphological analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVKmtL4%3D&md5=1b72c29f2ddf6c4a500125c487fb9292CAS | 7490702PubMed |
Eckert, J. J., and Fleming, T. P. (2011). The effect of nutrition and environment on the preimplantation embryo. The Obstetrician & Gynaecologist 13, 43–48.
| The effect of nutrition and environment on the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar |
Eckert, J. J., Porter, R., Watkins, A. J., Burt, E., Brooks, S., Leese, H. J., Humpherson, P. G., Cameron, I. T., and Fleming, T. P. (2012). Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE 7, e52791.
| Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsVKmtg%3D%3D&md5=646873f5cb17b61f90fc321f8cf61fbdCAS | 23300778PubMed |
Erickson, R. P. (1997). Does sex determination start at conception? Bioessays 19, 1027–1032.
| Does sex determination start at conception?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2Fls1KjtQ%3D%3D&md5=191da9700561eb16d631647b995e7c56CAS | 9394625PubMed |
Fernández-Gonzalez, R., Moreira, P., Bilbao, A., Jiménez, A., Pérez-Crespo, M., Ramírez, M. A., Rodríguez De Fonseca, F., Pintado, B., and Gutiérrez-Adán, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl Acad. Sci. USA 101, 5880–5885.
| Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior.Crossref | GoogleScholarGoogle Scholar | 15079084PubMed |
Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., and Rinaudo, P. F. (2014). Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes. Endocrinology 155, 4554–4567.
| Sexually dimorphic effect of in vitro fertilization (IVF) on adult mouse fat and liver metabolomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGqu7jI&md5=509b460fac9dee8a346d3de2057134a4CAS | 25211591PubMed |
Fleming, T. P., Velazquez, M. A., Eckert, J. J., Lucas, E. S., and Watkins, A. J. (2012). Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim. Reprod. Sci. 130, 193–197.
| Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38zht1ekuw%3D%3D&md5=5b2b1f92f59a2bbef1d5f8597761c480CAS | 22341375PubMed |
Ford, S. P., and Long, N. M. (2011). Evidence for similar changes in offspring phenotype following either maternal undernutrition or overnutrition: potential impact on fetal epigenetic mechanisms. Reprod. Fertil. Dev. 24, 105–111.
| 1:STN:280:DC%2BC383ptFaiug%3D%3D&md5=4ef6e4083325ff36fab1542e896f9090CAS | 22394722PubMed |
Garred, Ø., Rodal, S. K., van Deurs, B., and Sandvig, K. (2001). Reconstitution of clathrin-independent endocytosis at the apical domain of permeabilized MDCK II cells: requirement for a Rho-family GTPase. Traffic 2, 26–36.
| Reconstitution of clathrin-independent endocytosis at the apical domain of permeabilized MDCK II cells: requirement for a Rho-family GTPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpvFylsA%3D%3D&md5=bf8586fe48c2c4bfd8da58a65035a386CAS | 11208166PubMed |
Gluckman, P. D., and Hanson, M. A. (2004). Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736.
| Living with the past: evolution, development, and patterns of disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFajurw%3D&md5=b8847df0707611f3528b30b5304a10dfCAS | 15375258PubMed |
González, I. M., Martin, P. M., Burdsal, C., Sloan, J. L., Mager, S., Harris, T., and Sutherland, A. E. (2012). Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev. Biol. 361, 286–300.
| Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 22056783PubMed |
Gueth-Hallonet, C., Santa-Maria, A., Verroust, P., and Maro, B. (1994). Gp330 is specifically expressed in outer cells during epithelial differentiation in the preimplantation mouse embryo. Development 120, 3289–3299.
| 1:CAS:528:DyaK2MXitlSksbw%3D&md5=e8073aff31153291b9bbf1950a808c8eCAS | 7720568PubMed |
Harris, S. E., Gopichandran, N., Picton, H. M., Leese, H. J., and Orsi, N. M. (2005). Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64, 992–1006.
| Nutrient concentrations in murine follicular fluid and the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVGjsbw%3D&md5=db1f2f1a68a9adb86a5fd5e4c851f3c3CAS | 16054501PubMed |
Hart, R., and Norman, R. J. (2013a). The longer-term health outcomes for children born as a result of IVF treatment. Part II: mental health and development outcomes. Hum. Reprod. Update 19, 244–250.
| The longer-term health outcomes for children born as a result of IVF treatment. Part II: mental health and development outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1CgsrY%3D&md5=35f8998ab7da00109add51b8751a761eCAS | 23449643PubMed |
Hart, R., and Norman, R. J. (2013b). The longer-term health outcomes for children born as a result of IVF treatment. Part I: general health outcomes. Hum. Reprod. Update 19, 232–243.
| The longer-term health outcomes for children born as a result of IVF treatment. Part I: general health outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Cgsrc%3D&md5=2c72d1eb3f6bc5dd99278b890742866bCAS | 23449642PubMed |
Heyner, S. (1997). Growth factors in preimplantation development: role of insulin and insulin-like growth factors. Early Pregnancy 3, 153–163.
| 1:CAS:528:DyaK1MXhvFyjtbs%3D&md5=76d8c1215f0d40c127ec357d8985bc49CAS | 10086065PubMed |
Kaye, P. L., and Gardner, H. G. (1999). Preimplantation access to maternal insulin and albumin increases fetal growth rate in mice. Hum. Reprod. 14, 3052–3059.
| Preimplantation access to maternal insulin and albumin increases fetal growth rate in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFyjsA%3D%3D&md5=4babcaada1d91c432afbd641b9f7ab96CAS | 10601096PubMed |
Kaye, P. L., and Harvey, M. B. (1995). The role of growth factors in preimplantation development. Prog. Growth Factor Res. 6, 1–24.
| The role of growth factors in preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtlSiu7Y%3D&md5=4a271cc3e241f0c2ba52956bba5b04fbCAS | 8714366PubMed |
Kim, E. (2009). Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr. Res. Pract. 3, 64–71.
| Mechanisms of amino acid sensing in mTOR signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFegtr0%3D&md5=a63e6b1b387f721e1d13d6dd3c11bd74CAS | 20016704PubMed |
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C., and Fleming, T. P. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127, 4195–4202.
| 1:CAS:528:DC%2BD3cXotVWisbw%3D&md5=5b2c48bd66b32251cb18bc4d73fa6a79CAS | 10976051PubMed |
Kwong, W. Y., Miller, D. J., Ursell, E., Wild, A. E., Wilkins, A. P., Osmond, C., Anthony, F. W., and Fleming, T. P. (2006). Imprinted gene expression in the rat embryo–fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction 132, 265–277.
| Imprinted gene expression in the rat embryo–fetal axis is altered in response to periconceptional maternal low protein diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsrc%3D&md5=d0badda7290b4e663c6c9da4a49d7439CAS | 16885535PubMed |
Kwong, W. Y., Miller, D. J., Wilkins, A. P., Dear, M. S., Wright, J. N., Osmond, C., Zhang, J., and Fleming, T. P. (2007). Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses. Mol. Reprod. Dev. 74, 48–56.
| Maternal low protein diet restricted to the preimplantation period induces a gender-specific change on hepatic gene expression in rat fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsb%2FF&md5=5ef1d4acaea5489044b67108012ba865CAS | 16941667PubMed |
Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
| Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=713b097cab2f61406a4b92590ddf66d7CAS | 9068427PubMed |
Langley, S. C., and Jackson, A. A. (1994). Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci. (Lond.) 86, 217–222.
| 1:CAS:528:DyaK2cXksFKgtrc%3D&md5=a30a129e3bf4bc894e0b7267d7311030CAS | 8143432PubMed |
Langley-Evans, S. C. (2001). Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc. Nutr. Soc. 60, 505–513.
| Fetal programming of cardiovascular function through exposure to maternal undernutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zis1WgtA%3D%3D&md5=97fe189b855ea6aed49f80ef3c71c760CAS | 12069404PubMed |
Langley-Evans, S. C. (2013). Fetal programming of CVD and renal disease: animal models and mechanistic considerations. Proc. Nutr. Soc. 72, 317–325.
| Fetal programming of CVD and renal disease: animal models and mechanistic considerations.Crossref | GoogleScholarGoogle Scholar | 23312451PubMed |
Langley-Evans, S. C. (2015). Nutrition in early life and the programming of adult disease: a review. J. Hum. Nutr. Diet. 28, 1–14.
| Nutrition in early life and the programming of adult disease: a review.Crossref | GoogleScholarGoogle Scholar | 24479490PubMed |
Langley-Evans, S. C., Welham, S. J., Sherman, R. C., and Jackson, A. A. (1996). Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin. Sci. (Lond.) 91, 607–615.
| 1:STN:280:DyaK2s%2Fpslymug%3D%3D&md5=634698cf757057e3f47878d37fc9da1bCAS | 8942400PubMed |
MacLaughlin, S. M., and McMillen, I. C. (2007). Impact of periconceptional undernutrition on the development of the hypothalamo–pituitary–adrenal axis: does the timing of parturition start at conception? Curr. Drug Targets 8, 880–887.
| Impact of periconceptional undernutrition on the development of the hypothalamo–pituitary–adrenal axis: does the timing of parturition start at conception?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSns7fF&md5=eb2b88673a0599bc8eca8814ebac06e1CAS | 17691924PubMed |
Martin, P. M., and Sutherland, A. E. (2001). Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol. 240, 182–193.
| Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegt7s%3D&md5=1da7c1b643887577cc52595f9c73d4b1CAS | 11784055PubMed |
Martin, P. M., Sutherland, A. E., and Van Winkle, L. J. (2003). Amino acid transport regulates blastocyst implantation. Biol. Reprod. 69, 1101–1108.
| Amino acid transport regulates blastocyst implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsr4%3D&md5=064733603506acda9043a54575becf9bCAS | 12801981PubMed |
Moestrup, S. K., and Verroust, P. J. (2001). Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia. Annu. Rev. Nutr. 21, 407–428.
| Megalin- and cubilin-mediated endocytosis of protein-bound vitamins, lipids, and hormones in polarized epithelia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFyku7c%3D&md5=72f3f44796881fd3ac43e2ff12bb4a35CAS | 11375443PubMed |
Peterson, R. T., and Schreiber, S. L. (1998). Translation control: connecting mitogens and the ribosome. Curr. Biol. 8, R248–R250.
| Translation control: connecting mitogens and the ribosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitFyisrs%3D&md5=846f3ce502c86264a281b7e3fab94bf2CAS | 9545190PubMed |
Proud, C. G. (2007). Amino acids and mTOR signalling in anabolic function. Biochem. Soc. Trans. 35, 1187–1190.
| Amino acids and mTOR signalling in anabolic function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1eru7jN&md5=520ba1e1824b9958f70229853f526fdcCAS | 17956308PubMed |
Roseboom, T. J., Painter, R. C., van Abeelen, A. F., Veenendaal, M. V., and de Rooij, S. R. (2011). Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70, 141–145.
| Hungry in the womb: what are the consequences? Lessons from the Dutch famine.Crossref | GoogleScholarGoogle Scholar | 21802226PubMed |
Rossant, J., Chazaud, C., and Yamanaka, Y. (2003). Lineage allocation and asymmetries in the early mouse embryo. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1341–1349.
| Lineage allocation and asymmetries in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Cksbo%3D&md5=e649e992a4dd554c24ac3731e1ebbf95CAS | 14511480PubMed |
Schrode, N., Saiz, N., Di Talia, S., and Hadjantonakis, A. K. (2014). GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29, 454–467.
| GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFGlsLw%3D&md5=0ad92d5ad03db28b6511fa3014298130CAS | 24835466PubMed |
Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19 351–19 356.
| DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=27198a2594d37842d69953e3eb7c8b9aCAS |
Sjöblom, C., Roberts, C. T., Wikland, M., and Robertson, S. A. (2005). Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology 146, 2142–2153.
| Granulocyte–macrophage colony-stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis.Crossref | GoogleScholarGoogle Scholar | 15705781PubMed |
Sun, C., Velazquez, M. A., Marfy-Smith, S., Sheth, B., Cox, A., Johnston, D. A., Smyth, N., and Fleming, T. P. (2014). Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 141, 1140–1150.
| Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVGkt7Y%3D&md5=2c880cfb506ebf662c28e7fabc466491CAS | 24504338PubMed |
Sun, C., Denisenko, O., Sheth, B., Cox, A., Lucas, E. S., Smyth, N. R., and Fleming, T. P. (2015). Epigenetic regulation of histone modifications and Gata6 gene expression induced by maternal diet in mouse embryoid bodies in a model of developmental programming. BMC Dev. Biol. 15, 3.
| Epigenetic regulation of histone modifications and Gata6 gene expression induced by maternal diet in mouse embryoid bodies in a model of developmental programming.Crossref | GoogleScholarGoogle Scholar | 25609498PubMed |
Tarín, J. J., García-Pérez, M. A., Hermenegildo, C., and Cano, A. (2014). Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reprod. Biol. Endocrinol. 21, 23–30.
| Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles.Crossref | GoogleScholarGoogle Scholar |
Turner, N., and Robker, R. L. (2015). Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role? Mol. Hum. Reprod. 141, 1140–1150.
| Developmental programming of obesity and insulin resistance: does mitochondrial dysfunction in oocytes play a role?Crossref | GoogleScholarGoogle Scholar |
Velazquez, M. A., Sheth, B., Marfy-Smith, S., Eckert, J., and Fleming, T. P. (2014). Insulin and branched-chain amino acid depletion during mouse in vitro preimplantation embryo development alters postnatal growth and cardiovascular physiology. World Congress of Animal Reproduction 2014, Edinburgh UK. Reproduction Abstracts 1: P096.
Wang, X., and Proud, C. G. (2009). Nutrient control of TORC1, a cell-cycle regulator. Trends Cell Biol. 19, 260–267.
| Nutrient control of TORC1, a cell-cycle regulator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1CktrY%3D&md5=74353ad421d4839b916c3c9af1444494CAS | 19419870PubMed |
Watkins, A. J., and Sinclair, K. D. (2014). Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice. Am. J. Physiol. Heart Circ. Physiol. 306, H1444–H1452.
| Paternal low protein diet affects adult offspring cardiovascular and metabolic function in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXptVChsb4%3D&md5=c84036e816b0df0c40628adacc53fa19CAS | 24658019PubMed |
Watkins, A. J., Ursell, E., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., Wilkins, A., Perry, V. H., Sheth, B., Kwong, W. Y., Eckert, J. J., Wild, A. E., Hanson, M. A., Osmond, C., and Fleming, T. P. (2008a). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod. 78, 299–306.
| Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru7c%3D&md5=7da58a45068524e2f37eda9bff73707eCAS | 17989357PubMed |
Watkins, A. J., Wilkins, A., Cunningham, C., Perry, V. H., Seet, M. J., Osmond, C., Eckert, J. J., Torrens, C., Cagampang, F. R., Cleal, J., Gray, W. P., Hanson, M. A., and Fleming, T. P. (2008b). Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J. Physiol. 586, 2231–2244.
| Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFent7Y%3D&md5=97be7b524e438aead5134eb0bbb544feCAS | 18308825PubMed |
Watkins, A. J., Lucas, E. S., Torrens, C., Cleal, J. K., Green, L., Osmond, C., Eckert, J. J., Gray, W. P., Hanson, M. A., and Fleming, T. P. (2010). Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin–angiotensin-system homeostasis in the offspring. Br. J. Nutr. 103, 1762–1770.
| Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin–angiotensin-system homeostasis in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFSqtbw%3D&md5=2f1221297b5fe0c4296ff59735566d35CAS | 20128937PubMed |
Watkins, A. J., Lucas, E. S., Wilkins, A., Cagampang, F. R., and Fleming, T. P. (2011). Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PLoS ONE 6, e28745.
| Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xis1Wktg%3D%3D&md5=730283811d9aa5b82b7d77cc1162dd10CAS | 22194901PubMed |
Williams, C. L., Teeling, J. L., Perry, V. H., and Fleming, T. P. (2011). Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring. BMC Biol. 9, 49.
| Mouse maternal systemic inflammation at the zygote stage causes blunted cytokine responsiveness in lipopolysaccharide-challenged adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGht7rN&md5=4bb3112b5f64e16a278736ab1b2157edCAS | 21771319PubMed |
Williams, L., Seki, Y., Vuguin, P. M., and Charron, M. J. (2014). Animal models of in utero exposure to a high fat diet: a review. Biochim. Biophys. Acta 1842, 507–519.
| Animal models of in utero exposure to a high fat diet: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1emtr7N&md5=f0a428042f1d00d678de7f37c4f2210bCAS | 23872578PubMed |
Zambrano, E., Guzman, C., Rodriguez-Gonzalez, G. L., Durand-Carbajal, M., and Nathanielsz, P. W. (2014). Fetal programming of sexual development and reproductive function. Mol. Cell. Endocrinol. 382, 538–549.
| Fetal programming of sexual development and reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFelu7nM&md5=be52ce4991867c3654d2a6d2f3d9028aCAS | 24045010PubMed |
Zhang, S., Rattanatray, L., Morrison, J. L., Nicholas, L. M., Lie, S., and McMillen, I. C. (2011). Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring. Exp. Diabetes Res. 2011, 585749.
| Maternal obesity and the early origins of childhood obesity: weighing up the benefits and costs of maternal weight loss in the periconceptional period for the offspring.Crossref | GoogleScholarGoogle Scholar | 22203829PubMed |
Zohn, I. E., and Sarkar, A. A. (2010). The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation. Birth Defects Res. A Clin. Mol. Teratol. 88, 593–600.
| The visceral yolk sac endoderm provides for absorption of nutrients to the embryo during neurulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVKrsL%2FF&md5=9c64a37c6b67a446d6c0188ab0fe418bCAS | 20672346PubMed |