Different locations of RANTES and its receptors on mouse epididymal spermatozoa
Jin-Hua Wei A E , Xiao Feng A E , Zhi-Jian Sun B , Pang Cheng A , Bin-Fang Ma A , Jie Zhao A , Yu-Hang Dong C , Yuan-Qiang Zhang A D and Zhen Li A DA Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, No. 169, Changle West Road, Xi’an 710032, China.
B Research Center for Reproductive Medicine, 202 Hospital of PLA, No. 5, Guangrong Street, Shenyang 110003, China.
C Department of Stomatology, The Fourth Military Medical University, No. 169, Changle West Road, Xi’an 710032, China.
D Corresponding authors. Emails: lizhenhe@fmmu.edu.cn; zhangyq@fmmu.edu.cn
E These authors contributed equally to this work.
Reproduction, Fertility and Development 28(10) 1509-1517 https://doi.org/10.1071/RD14231
Submitted: 26 June 2014 Accepted: 9 February 2015 Published: 19 March 2015
Abstract
Our previous study showed that the chemokine regulated upon activation normal T-cell expressed and secreted (RANTES) originating from the mouse epididymis bound to the midpiece of luminal spermatozoa. The present study was undertaken to investigate the association between RANTES and epididymal spermatozoa and to determine whether the association is mediated by the RANTES receptors CCR1, CCR3 or CCR5. The use of reverse transcription polymerase chain reaction (RT-PCR), immunohistochemical staining and immunofluorescent staining demonstrated that RANTES secreted by apical and narrow cells of mouse epididymal ducts was associated with luminal spermatozoa. Flow cytometric analysis and immunofluorescent labelling revealed that the association between RANTES and spermatozoa of different regions weakened gradually as the spermatozoa moved along the epididymis. Moreover, CCR1, CCR3 and CCR5 were expressed in epididymal spermatozoa and located on the head of epididymal spermatozoa, while RANTES was generally located at the midpiece. In conclusion, RANTES and its receptors were not in the same sperm location, suggesting that RANTES binding to mouse epididymal spermatozoa is independent of CCR1, CCR3 and CCR5.
Additional keywords: CCR1, CCR3, CCR5, epididymis.
References
Adamali, H. I., Somani, I. H., Huang, J. Q., Gravel, R. A., Trasler, J. M., and Hermo, L. (1999). Characterisation and development of the regional- and cellular-specific abnormalities in the epididymis of mice with beta-hexosaminidase A deficiency. J. Androl. 20, 803–824.| 1:STN:280:DC%2BD3c%2FlslKiuw%3D%3D&md5=a01efb7f4dbdfeed7a67091035c989faCAS | 10591619PubMed |
Appay, V., and Rowland-Jones, S. L. (2001). RANTES: a versatile and controversial chemokine. Trends Immunol. 22, 83–87.
| RANTES: a versatile and controversial chemokine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVKhsro%3D&md5=4e8a868995187dd489b77e0c59f40d39CAS | 11286708PubMed |
Appay, V., Dunbar, P. R., Cerundolo, V., McMichael, A., Czaplewski, L., and Rowland-Jones, S. (2000). RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell-surface aggregation. Int. Immunol. 12, 1173–1182.
| RANTES activates antigen-specific cytotoxic T lymphocytes in a mitogen-like manner through cell-surface aggregation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFOmsbk%3D&md5=fc685dab023b7ca232bff4126bcc0cb5CAS | 10917892PubMed |
Bacon, K. B., Premack, B. A., Gardner, P., and Schall, T. J. (1995). Activation of dual T cell signalling pathways by the chemokine RANTES. Science 269, 1727–1730.
| Activation of dual T cell signalling pathways by the chemokine RANTES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1aiur4%3D&md5=0994b592c9cc0341fea8324e35ff8f92CAS | 7569902PubMed |
Barbonetti, A., Vassallo, M. R., Antonangelo, C., Nuccetelli, V., D’Angeli, A., Pelliccione, F., Giorgi, M., Francavilla, F., and Francavilla, S. (2008). RANTES and human sperm fertilising ability: effect on acrosome reaction and sperm–oocyte fusion. Mol. Hum. Reprod. 14, 387–391.
| RANTES and human sperm fertilising ability: effect on acrosome reaction and sperm–oocyte fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVOqt7k%3D&md5=bd2565dae0d170fe27b4353a5b086351CAS | 18490356PubMed |
Barbonetti, A., Vassallo, M. R., Pelliccione, F., D’Angeli, A., Santucci, R., Muciaccia, B., Stefanini, M., Francavilla, F., and Francavilla, S. (2009). Beta-chemokine receptor CCR5 in human spermatozoa and its relationship with seminal parameters. Hum. Reprod. 24, 2979–2987.
| Beta-chemokine receptor CCR5 in human spermatozoa and its relationship with seminal parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKls7rE&md5=6925daf67a13bb3c6b062a00e1f220a6CAS | 19729379PubMed |
Binette, J. P., Ohishi, H., Burgi, W., Kimura, A., Suyemitsu, T., Seno, N., and Schmid, K. (1996). The content and distribution of glycosaminoglycans in the ejaculates of normal and vasectomised men. Andrologia 28, 145–149.
| The content and distribution of glycosaminoglycans in the ejaculates of normal and vasectomised men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjs1SksLk%3D&md5=dea6968dc4bb0070e879707a0bcf083eCAS | 8738077PubMed |
Ceballos, A., Remes, L. F., Sabatte, J., Rodriguez, R. C., Cabrini, M., Jancic, C., Raiden, S., Donaldson, M., Agustin, P. R. J., Marin-Briggiler, C., Vazquez-Levin, M., Capani, F., Amigorena, S., and Geffner, J. (2009). Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells. J. Exp. Med. 206, 2717–2733.
| Spermatozoa capture HIV-1 through heparan sulfate and efficiently transmit the virus to dendritic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ltr3K&md5=e0010ffce47700602e6d3f3794f5323aCAS | 19858326PubMed |
Chang, T. L., Gordon, C. J., Roscic-Mrkic, B., Power, C., Proudfoot, A. E., Moore, J. P., and Trkola, A. (2002). Interaction of the CC-chemokine RANTES with glycosaminoglycans activates a p44/p42 mitogen-activated protein kinase-dependent signalling pathway and enhances human immunodeficiency virus type 1 infectivity. J. Virol. 76, 2245–2254.
| Interaction of the CC-chemokine RANTES with glycosaminoglycans activates a p44/p42 mitogen-activated protein kinase-dependent signalling pathway and enhances human immunodeficiency virus type 1 infectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1KqtbY%3D&md5=3573b2056e7e7fee6382a6de8c5ef0d7CAS | 11836402PubMed |
Charo, I. F., and Ransohoff, R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621.
| The many roles of chemokines and chemokine receptors in inflammation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlKisro%3D&md5=9161df818fd34b44127d899f9701a2b6CAS | 16467548PubMed |
Cocchi, F., DeVico, A. L., Garzino-Demo, A., Arya, S. K., Gallo, R. C., and Lusso, P. (1995). Identification of RANTES, MIP-1 alpha and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.
| Identification of RANTES, MIP-1 alpha and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSiurnL&md5=40c3ad417d442ec6ae9346f4fdccec17CAS | 8525373PubMed |
dos Santos, A. V. F., Onofre, G. R., Oliveira, D. M. P., Machado, E. A., Allodi, S., and Silva, L. C. F. (2006). Heparan sulfate is the main sulfated glycosaminoglycan species in internal organs of the male cockroach, Periplaneta americana. Micron 37, 41–46.
| Heparan sulfate is the main sulfated glycosaminoglycan species in internal organs of the male cockroach, Periplaneta americana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cms7fO&md5=766cefb0c98645a2b6f54333a638bf8eCAS |
Fang, P., Zeng, P., Wang, Z., Liu, M., Xu, W., Dai, J., Zhao, X., Zhang, D., Liang, D., Chen, X., Shi, S., Zhang, M., Wang, L., Qiao, Z., and Shi, H. (2014). Estimated diversity of messenger RNAs in each murine spermatozoa and their potential function during early zygotic development. Biol. Reprod. 90, 94.
| Estimated diversity of messenger RNAs in each murine spermatozoa and their potential function during early zygotic development.Crossref | GoogleScholarGoogle Scholar | 24671878PubMed |
Gopichandran, N., Ekbote, U. V., Walker, J. J., Brooke, D., and Orsi, N. M. (2006). Multiplex determination of murine seminal fluid cytokine profiles. Reproduction 131, 613–621.
| Multiplex determination of murine seminal fluid cytokine profiles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs12jsb0%3D&md5=578f5d984ce8c65dc043acfdfe02f9aaCAS | 16514204PubMed |
Hermo, L., and Robaire, B. (2002). Epididymal cell types and their functions. In ‘The Epididymis: From Molecules to Clinical Practice’. (Eds B. Robaire and B. Hinton.) pp. 81–102. (Kluwer Academic–Plenum Publishers: New York.)
Hornung, D., Ryan, I. P., Chao, V. A., Vigne, J., Schriock, E. D., and Taylor, R. N. (1997). Immunolocalisation and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. J. Clin. Endocrinol. Metab. 82, 1621–1628.
| 1:CAS:528:DyaK2sXjtVGls7k%3D&md5=3ffedc23279b0b8186d6f441e982406dCAS | 9141560PubMed |
Hornung, D., Bentzien, F., Wallwiener, D., Kiesel, L., and Taylor, R. N. (2001). Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid. Mol. Hum. Reprod. 7, 163–168.
| Chemokine bioactivity of RANTES in endometriotic and normal endometrial stromal cells and peritoneal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFahtr4%3D&md5=cc9982dd2da805a22181764f847e1cdfCAS | 11160842PubMed |
Isobe, T., Minoura, H., Tanaka, K., Shibahara, T., Hayashi, N., and Toyoda, N. (2002). The effect of RANTES on human sperm chemotaxis. Hum. Reprod. 17, 1441–1446.
| The effect of RANTES on human sperm chemotaxis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVejt7c%3D&md5=89abf46e40551cf1f5c575e5beb8acbfCAS | 12042258PubMed |
Joseph, A., Shur, B. D., and Hess, R. A. (2011). Oestrogen, efferent ductules and the epididymis. Biol. Reprod. 84, 207–217.
| Oestrogen, efferent ductules and the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVelsbo%3D&md5=24a1ec3e667634d31c23d224ad6f3481CAS | 20926801PubMed |
Kaneko, S., Yoshida, J., Ishikawa, H., and Takamatsu, K. (2012). Single-cell pulsed-field gel electrophoresis to detect the early stage of DNA fragmentation in human sperm nuclei. PLoS ONE 7, e42257.
| Single-cell pulsed-field gel electrophoresis to detect the early stage of DNA fragmentation in human sperm nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCgtbnK&md5=67f909b790229599d410e9e8d2c8dbe2CAS | 22848752PubMed |
Koçak, I., Yenisey, C., Dündar, M., Okyay, P., and Serter, M. (2002). Relationship between seminal plasma interleukin-6 and tumour necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol. Res. 30, 263–267.
| Relationship between seminal plasma interleukin-6 and tumour necrosis factor alpha levels with semen parameters in fertile and infertile men.Crossref | GoogleScholarGoogle Scholar | 12202945PubMed |
Koumantakis, E., Matalliotakis, I., Kyriakou, D., Fragouli, Y., and Relakis, K. (1998). Increased levels of interleukin-8 in human seminal plasma. Andrologia 30, 339–343.
| Increased levels of interleukin-8 in human seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVOls7Y%3D&md5=15fd3cba454e334f4d8748f89f8ae181CAS | 9835948PubMed |
Levy, J. A. (2009). The unexpected pleiotropic activities of RANTES. J. Immunol. 182, 3945–3946.
| The unexpected pleiotropic activities of RANTES.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsVSjtr0%3D&md5=5e94e074749d9ba2514e462c25638452CAS | 19299688PubMed |
Li, Z., Sun, Z. J., Liao, C. G., Ma, L., Ma, B. F., and Zhang, Y. Q. (2010). Regulated upon activation normal T-cell expressed and secreted originating from the epididymis differentially associates with viable and defective spermatozoa. Fertil. Steril. 93, 2661–2667.
| Regulated upon activation normal T-cell expressed and secreted originating from the epididymis differentially associates with viable and defective spermatozoa.Crossref | GoogleScholarGoogle Scholar | 20189554PubMed |
Lillard, J. W., Boyaka, P. N., Taub, D. D., and McGhee, J. R. (2001). RANTES potentiates antigen-specific mucosal immune responses. J. Immunol. 166, 162–169.
| RANTES potentiates antigen-specific mucosal immune responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1aktg%3D%3D&md5=a3bc696e1280e51b37635ca3c422f142CAS | 11123289PubMed |
Lukacs-Kornek, V., Engel, D., Tacke, F., and Kurts, C. (2008). The role of chemokines and their receptors in dendritic cell biology. Front. Biosci. 13, 2238–2252.
| The role of chemokines and their receptors in dendritic cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Cgtbs%3D&md5=ec3dee32b1cf22c98726006ee2b4eb2cCAS | 17981706PubMed |
Muciaccia, B., Padula, F., Vicini, E., Gandini, L., Lenzi, A., and Stefanini, M. (2005). Beta-chemokine receptors 5 and 3 are expressed on the head region of human spermatozoon. FASEB J. 19, 2048–2050.
| 1:CAS:528:DC%2BD2MXhtlSlsrbF&md5=c41bcc7a2f690a27cf3a3cec18b88182CAS | 16174786PubMed |
Nakai, S., Watanabe, A., and Onitake, K. (1999). Sperm surface heparin–heparan sulfate is responsible for sperm binding to the uterine envelope in the newt, Cynops pyrrhogaster. Dev. Growth Differ. 41, 101–107.
| Sperm surface heparin–heparan sulfate is responsible for sperm binding to the uterine envelope in the newt, Cynops pyrrhogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltV2gsro%3D&md5=747e51fbe9a5fe0d0f3f432e6a2710f8CAS | 10445507PubMed |
Naz, R. K., and Leslie, M. H. (2000). Immunobiologic implication of RANTES in seminal plasma of fertile, infertile and immune-infertile men. Am. J. Reprod. Immunol. 44, 197–204.
| Immunobiologic implication of RANTES in seminal plasma of fertile, infertile and immune-infertile men.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzgt1yjtQ%3D%3D&md5=ca64074f053ecfa43b0112ac9943683eCAS | 11076090PubMed |
Nishimura, H., Gupta, S., Myles, D. G., and Primakoff, P. (2011). Characterisation of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins. Reproduction 141, 437–451.
| Characterisation of mouse sperm TMEM190, a small transmembrane protein with the trefoil domain: evidence for co-localization with IZUMO1 and complex formation with other sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlKitbc%3D&md5=dabe11ee82b0346590edb1dea1a23fb9CAS | 21273369PubMed |
Paradisi, R., Capelli, M., Mandini, M., Bellavia, E., Focacci, M., and Flamigni, C. (1995). Interleukin-2 in seminal plasma of fertile and infertile men. Arch. Androl. 35, 35–41.
| Interleukin-2 in seminal plasma of fertile and infertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVemsr0%3D&md5=2c34989351a981b2b3797cee34538111CAS | 8554429PubMed |
Politch, J. A., Tucker, L., Bowman, F. P., and Anderson, D. J. (2007). Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum. Reprod. 22, 2928–2935.
| Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Shu7fK&md5=815bdfa0289a2fdb376a2c51cb744729CAS | 17855405PubMed |
Reyes, R., Ramirez, G., and Delgado, N. M. (2004). Fluorescent berberine binding as a marker of internal glycosaminoglycans sulfate in bovine oocytes and sperm cells. Arch. Androl. 50, 327–332.
| Fluorescent berberine binding as a marker of internal glycosaminoglycans sulfate in bovine oocytes and sperm cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOltbw%3D&md5=8cf0ee11ddead85e69021d70402748dcCAS | 15551746PubMed |
Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., Proudfoot, A. E., and Trkola, A. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood 102, 1169–1177.
| RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFWksL0%3D&md5=0ba3ac465a3c7ae52ff3b7423afee1e9CAS | 12714503PubMed |
Shimada, M., Yanai, Y., Okazaki, T., Noma, N., Kawashima, I., Mori, T., and Richards, J. S. (2008). Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine–chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilisation. Development 135, 2001–2011.
| Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine–chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotF2hs7w%3D&md5=8ea292bf959ebcb40c2f8b1f3cddabf1CAS | 18434414PubMed |
Tokuyama, O., Nakamura, Y., Ozaki, K., Kawashima, K., Fujino, Y., and Ishiko, O. (2003). Using a vortex mixer for testicular sperm collection. J. Reprod. Med. 48, 865–868.
| 14686019PubMed |
Wang, S. W., Wu, H. H., Liu, S. C., Wang, P. C., Ou, W. C., Chou, W. Y., Shen, Y. S., and Tang, C. H. (2012). CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma. PLoS ONE 7, e35101.
| CCL5 and CCR5 interaction promotes cell motility in human osteosarcoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvF2gt7s%3D&md5=dc6b1727e9f192db7350e19430a2fde7CAS | 22506069PubMed |
Weerachatyanukul, W., Xu, H., Anupriwan, A., Carmona, E., Wade, M., Hermo, L., Da, S. S., Rippstein, P., Sobhon, P., Sretarugsa, P., and Tanphaichitr, N. (2003). Acquisition of arylsulfatase A onto the mouse sperm surface during epididymal transit. Biol. Reprod. 69, 1183–1192.
| Acquisition of arylsulfatase A onto the mouse sperm surface during epididymal transit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2ns78%3D&md5=f0c533645b259deb5a77660e6821c541CAS | 12773421PubMed |
Yeung, C., and Cooper, T. (2002). Acquisition and development of sperm motility upon maturation in the epididymis. In ‘The Epididymis: From Molecules to Clinical Practice’. (Eds B. Robaire and B. Hinton.) pp. 417–434. (Kluwer Academic–Plenum Publishers: New York.)