Why we should not select the faster embryo: lessons from mice and cattle
Alfonso Gutierrez-Adan A , Carlee R. White C D E , Ann Van Soom B and Mellissa R. W. Mann C D E FA Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de la Coruña Km 5,9 28040 Madrid Spain.
B Department of Reproduction, Obstetrics and Herd Health, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
C Department of Obstetrics and Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.
D Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.
E Children’s Health Research Institute, 800 Commissioners Rd E, London, Ontario, N6C 2V5, Canada.
F Corresponding author. Email: mmann22@uwo.ca
Reproduction, Fertility and Development 27(5) 765-775 https://doi.org/10.1071/RD14216
Submitted: 18 June 2014 Accepted: 5 August 2014 Published: 11 September 2014
Abstract
Many studies have shown that in vitro culture can negatively impact preimplantation development. This necessitates some selection criteria for identifying the best-suited embryos for transfer. That said, embryo selection after in vitro culture remains a subjective process in most mammalian species, including cows, mice and humans. General consensus in the field is that embryos that develop in a timely manner have the highest developmental competence and viability after transfer. Herein lies the key question: what is a timely manner? With emerging data in bovine and mouse supporting increased developmental competency in embryos with moderate rates of development, it is time to question whether the fastest developing embryos are the best embryos for transfer in the human clinic. This is especially relevant to epigenetic gene regulation, including genomic imprinting, where faster developing embryos exhibit loss of imprinted methylation, as well as to sex selection bias, where faster developmental rates of male embryos may lead to biased embryo transfer and, in turn, biased sex ratios. In this review, we explore evidence surrounding the question of developmental timing as it relates to bovine embryo quality, mouse embryo quality and genomic imprint maintenance, and embryo sex.
Additional keywords: developmental kinetics, embryo culture, embryo quality, epigenetics, sex.
References
Alikani, M., Calderon, G., Tomkin, G., Garrisi, J., Kokot, M., and Cohen, J. (2000). Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro. Hum. Reprod. 15, 2634–2643.| Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FoslWmug%3D%3D&md5=70d3b131b683b8cbc57c5038c0006c4eCAS | 11098037PubMed |
Arav, A., Aroyo, A., Yavin, S., and Roth, Z. (2008). Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis. Reprod. Biomed. Online 17, 669–675.
| Prediction of embryonic developmental competence by time-lapse observation and ‘shortest-half’ analysis.Crossref | GoogleScholarGoogle Scholar | 18983751PubMed |
Avery, B., Jorgensen, C. B., Madison, V., and Greve, T. (1992). Morphological development and sex of bovine in vitro-fertilized embryos. Mol. Reprod. Dev. 32, 265–270.
| Morphological development and sex of bovine in vitro-fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zmtVakug%3D%3D&md5=bcfecd4bebdcce24ee78e6e739d7912cCAS | 1497876PubMed |
Bavister, B. (2002). Timing of embryo development. In ‘Assessment of Embryo Quality: Invasive and Non-invasive Techniques’. (Eds A. Van Soom and M. L. Boerjan.) pp. 139–156. (Springer Science + Business Media: Dordrecht.)
Bazrgar, M., Gourabi, H., Yazdi, P. E., Vazirinasab, H., Fakhri, M., Hassani, F., and Valojerdi, M. R. (2014). DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. Eur. J. Obstet. Gynecol. Reprod. Biol. 175, 152–156.
| DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFaqtL0%3D&md5=4dd3d0f56f956fc39696ee8ffe66a403CAS | 24485984PubMed |
Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2008). Can bovine in vitro-matured oocytes selectively process X- or Y-sorted sperm differentially? Biol. Reprod. 79, 594–597.
| Can bovine in vitro-matured oocytes selectively process X- or Y-sorted sperm differentially?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbnE&md5=95ebf5104c7b05b73e49801642acc3d5CAS | 18579751PubMed |
Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., and Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc. Natl Acad. Sci. USA 107, 3394–3399.
| Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFymtbo%3D&md5=da68184c3a41f146c24ecc4dd6f79b34CAS | 20133684PubMed |
Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011a). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141, 563–570.
| Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCju7Y%3D&md5=feaf56214ad4f493634ad60079ce6866CAS | 21339284PubMed |
Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011b). Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction 141, 801–808.
| Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovVCktLg%3D&md5=5cb4b8ec9ba76acbb5a374ac43f03462CAS | 21411694PubMed |
Biggers, J. D., McGinnis, L. K., and Raffin, M. (2000). Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol. Reprod. 63, 281–293.
| Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2rsbw%3D&md5=718a221f90e693d15698d06514cfec44CAS | 10859270PubMed |
Bowman, P., and McLaren, A. (1970). Cleavage rate of mouse embryos in vivo and in vitro. J. Embryol. Exp. Morphol. 24, 203–207.
| 1:CAS:528:DyaE3cXlt1Ogs7s%3D&md5=43c1d1812ca0440d4b73abe75b230639CAS | 5487156PubMed |
Brevini, T. A., Lonergan, P., Cillo, F., Francisci, C., Favetta, L. A., Fair, T., and Gandolfi, F. (2002). Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol. Reprod. Dev. 63, 510–517.
| Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlCgt74%3D&md5=3d6d20908c406ba5bbe809ce2a480a1fCAS | 12412054PubMed |
Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., Ramirez, M. A., and Gutierrez-Adan, A. (2012a). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology 77, 785–793.
| Long-term and transgenerational effects of in vitro culture on mouse embryos.Crossref | GoogleScholarGoogle Scholar | 21855990PubMed |
Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., and Gutierrez-Adan, A. (2012b). Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring. Biol. Reprod. 87, 34.
| Male mice produced by in vitro culture have reduced fertility and transmit organomegaly and glucose intolerance to their male offspring.Crossref | GoogleScholarGoogle Scholar | 22649070PubMed |
Chamayou, S., Patrizio, P., Storaci, G., Tomaselli, V., Alecci, C., Ragolia, C., Crescenzo, C., and Guglielmino, A. (2013). The use of morphokinetic parameters to select all embryos with full capacity to implant. J. Assist. Reprod. Genet. 30, 703–710.
| The use of morphokinetic parameters to select all embryos with full capacity to implant.Crossref | GoogleScholarGoogle Scholar | 23585186PubMed |
Chen, S-L, Shi, X-Y, Zheng, H-Y, Wu, F-R, and Luo, C. (2010). Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos. Fertil. Steril. 94, 2356–2358.e1.
| Aberrant DNA methylation of imprinted H19 gene in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlent7nP&md5=db7ab442d0dffd72800bb5474e3fa32bCAS | 20303482PubMed |
Cruz, M., Garrido, N., Herrero, J., Pérez-Cano, I., Muñoz, M., and Meseguer, M. (2012). Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod. Biomed. Online 25, 371–381.
| Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality.Crossref | GoogleScholarGoogle Scholar | 22877944PubMed |
Cummins, J. M., Breen, T. M., Harrison, K. L., Shaw, J. M., Wilson, L. M., and Hennessey, J. F. (1986). A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality. J. In Vitro Fert. Embryo Transf. 3, 284–295.
| A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and in comparison with visual estimates of embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FlvFCmug%3D%3D&md5=33efa7985707ba843bf9e42412257a92CAS | 3783014PubMed |
Dal Canto, M., Coticchio, G., Renzini, M. M., De Ponti, E., Novara, P. V., Brambillasca, F., Comi, R., and Fadini, R. (2012). Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod. Biomed. Online 25, 474–480.
| Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation.Crossref | GoogleScholarGoogle Scholar | 22995750PubMed |
Dean, J. H., Chapman, M. G., and Sullivan, E. A. (2010). The effect on human sex ratio at birth by assisted reproductive technology (ART) procedures: an assessment of babies born following single embryo transfers, Australia and New Zealand, 2002–2006. BJOG 117, 1628–1634.
| The effect on human sex ratio at birth by assisted reproductive technology (ART) procedures: an assessment of babies born following single embryo transfers, Australia and New Zealand, 2002–2006.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cbntVylug%3D%3D&md5=74bf26365edfb4c4e46e355221c03634CAS | 20875033PubMed |
Dinnyés, A., Lonergan, P., Fair, T., Boland, M. P., and Yang, X. (1999). Timing of the first cleavage post-insemination affects cryosurvival of in vitro-produced bovine blastocysts. Mol. Reprod. Dev. 53, 318–324.
| Timing of the first cleavage post-insemination affects cryosurvival of in vitro-produced bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 10369392PubMed |
Dode, M. A., Dufort, I., Massicotte, L., and Sirard, M. A. (2006). Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos. Mol. Reprod. Dev. 73, 288–297.
| Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKht7o%3D&md5=b9e845734534d53623268f89aca550d3CAS | 16362969PubMed |
Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S., and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
| Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsrc%3D&md5=10cf0dfb9b21c6ad2164bea69e1b9c9bCAS | 10819752PubMed |
Edwards, R. G., Fishel, S. B., Cohen, J., Fehilly, C. B., Purdy, J. M., Slater, J. M., Steptoe, P. C., and Webster, J. M. (1984). Factors influencing the success of in vitro fertilization for alleviating human infertility. J. In Vitro Fert. Embryo Transf. 1, 3–23.
| Factors influencing the success of in vitro fertilization for alleviating human infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3mtlWkuw%3D%3D&md5=7b615130527ce56f7bd7ef211804fda2CAS | 6242159PubMed |
Fair, T., Gutierrez-Adan, A., Murphy, M., Rizos, D., Martin, F., Boland, M. P., and Lonergan, P. (2004). Search for the bovine homolog of the murine ped gene and characterization of its messenger RNA expression during bovine preimplantation development. Biol. Reprod. 70, 488–494.
| Search for the bovine homolog of the murine ped gene and characterization of its messenger RNA expression during bovine preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsl2isA%3D%3D&md5=a4699d85a88f501e9dfb188afd756f0fCAS | 14568917PubMed |
Fauque, P., Jouannet, P., Lesaffre, C., Ripoche, M.-A., Dandolo, L., Vaiman, D., and Jammes, H. (2007). Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Dev. Biol. 7, 116.
| Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos.Crossref | GoogleScholarGoogle Scholar | 17949482PubMed |
Fauque, P., Mondon, F., Letourneur, F., Ripoche, M.-A., Journot, L., Barbaux, S., Dandolo, L., Patrat, C., Wolf, J.-P., Jouannet, P., Jammes, H., and Vaiman, D. (2010). In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model. PLoS ONE 5, e9218.
| In vitro fertilization and embryo culture strongly impact the placental transcriptome in the mouse model.Crossref | GoogleScholarGoogle Scholar | 20169163PubMed |
Favetta, L. A., Robert, C., John, E. S., Betts, D. H., and King, W. A. (2004). p66shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos. Mol. Hum. Reprod. 10, 383–392.
| p66shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSisr8%3D&md5=590103bc169cfde8888865a415335a09CAS | 15064348PubMed |
Fenwick, J., Platteau, P., Murdoch, A. P., and Herbert, M. (2002). Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Hum. Reprod. 17, 407–412.
| Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fpt1Wquw%3D%3D&md5=5618defa019fcbcbb559855e2cce0a7bCAS | 11821286PubMed |
Fernández-Gonzalez, R., Moreira, P., Bilbao, A., Jiménez, A., Pérez-Crespo, M., Ramírez, M. A., Rodríguez De Fonseca, F., Pintado, B., and Gutiérrez-Adán, A. (2004). Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl Acad. Sci. USA 101, 5880–5885.
| Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior.Crossref | GoogleScholarGoogle Scholar | 15079084PubMed |
Fernández-Gonzalez, R., Ramirez, M. A., Bilbao, A., De Fonseca, F. R., and Gutiérrez-Adan, A. (2007). Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects. Mol. Reprod. Dev. 74, 1149–1156.
| Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects.Crossref | GoogleScholarGoogle Scholar | 17474101PubMed |
Fernández-Gonzalez, R., de Dios Hourcade, J., Lopez-Vidriero, I., Benguría, A., De Fonseca, F. R., and Gutiérrez-Adán, A. (2009). Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice. Reproduction 137, 271–283.
| Analysis of gene transcription alterations at the blastocyst stage related to the long-term consequences of in vitro culture in mice.Crossref | GoogleScholarGoogle Scholar | 19017722PubMed |
Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., and Gutierrez-Adan, A. (2010). Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol. Reprod. 83, 720–727.
| Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls77M&md5=2023b06ebe8b09edec6564bc7c15e851CAS | 20650886PubMed |
Gardner, D. K., and Lane, M. (1996). Fertilization and early embryology: alleviation of the ‘2-cell block’and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum. Reprod. 11, 2703–2712.
| Fertilization and early embryology: alleviation of the ‘2-cell block’and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1OjtL8%3D&md5=bdf0d51725343631082acc22c860385aCAS | 9021376PubMed |
Gardner, D. K., and Leese, H. J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool. 242, 103–105.
| Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3ltlShtQ%3D%3D&md5=6af0aee034d5ba14ffd871ce9a4443b5CAS | 3598508PubMed |
Gardner, D. S., Van Bon, B. W., Dandrea, J., Goddard, P. J., May, S. F., Wilson, V., Stephenson, T., and Symonds, M. E. (2006). Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep. J. Endocrinol. 190, 203–212.
| Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjtrc%3D&md5=ad8aa38d21cf663ac4d54d8a1954d950CAS | 16899555PubMed |
Giritharan, G., Talbi, S., Donjacour, A., Di Sebastiano, F., Dobson, A. T., and Rinaudo, P. F. (2007). Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos. Reproduction 134, 63–72.
| Effect of in vitro fertilization on gene expression and development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGis74%3D&md5=632fb80bd7c66531f84064fa65b6a15fCAS | 17641089PubMed |
Graffelman, J., Fugger, E. F., Keyvanfar, K., and Schulman, J. D. (1999). Human live birth and sperm-sex ratios compared. Hum. Reprod. 14, 2917–2920.
| Human live birth and sperm-sex ratios compared.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FhvVansg%3D%3D&md5=6c56b3915ffb973a5994572e03abe7abCAS | 10548648PubMed |
Grisart, B., Massip, A., and Dessy, F. (1994). Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J. Reprod. Fertil. 101, 257–264.
| Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FhslygtA%3D%3D&md5=b6d82995b439a332c2081d9f91d8ff50CAS | 7932357PubMed |
Gutiérrez-Adan, A., Behboodi, E., Andersen, G. B., Medrano, J. F., and Murray, J. D. (1996). Relationship between stage of development and sex of bovine IVM-IVF embryos cultured in vitro versus in the sheep oviduct. Theriogenology 46, 515–525.
| Relationship between stage of development and sex of bovine IVM-IVF embryos cultured in vitro versus in the sheep oviduct.Crossref | GoogleScholarGoogle Scholar | 16727919PubMed |
Gutiérrez-Adán, A., Oter, M., Martinez-Madrid, B., Pintado, B., and De La Fuente, J. (2000). Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Mol. Reprod. Dev. 55, 146–151.
| Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 10618653PubMed |
Gutiérrez-Adán, A., Granados, J., Pintado, B., and De La Fuente, J. (2001a). Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reprod. Fertil. Dev. 13, 361–365.
| Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 11833931PubMed |
Gutiérrez-Adán, A., Lonergan, P., Rizos, D., Ward, F. A., Boland, M. P., Pintado, B., and de la Fuente, J. (2001b). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology 55, 1117–1126.
| Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 11322239PubMed |
Gutiérrez-Adán, A., Rizos, D., Fair, T., Moreira, P. N., Pintado, B., de la Fuente, J., Boland, M. P., and Lonergan, P. (2004). Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol. Reprod. Dev. 68, 441–448.
| Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 15236328PubMed |
Gutiérrez-Adán, A., Perez-Crespo, M., Fernandez-Gonzalez, R., Ramirez, M. A., Moreira, P., Pintado, B., Lonergan, P., and Rizos, D. (2006). Developmental consequences of sexual dimorphism during pre-implantation embryonic development. Reprod. Domest. Anim. 41, 54–62.
| Developmental consequences of sexual dimorphism during pre-implantation embryonic development.Crossref | GoogleScholarGoogle Scholar | 16984469PubMed |
Harlow, G. M., and Quinn, P. (1979). Foetal and placental growth in the mouse after pre-implantation development in vitro under oxygen concentrations of 5 and 20%. Aust. J. Biol. Sci. 32, 363–369.
| 1:STN:280:DyaL3c%2FmsVGlsQ%3D%3D&md5=5038f6dc602295821b8e3cd0d2f919abCAS | 508209PubMed |
Hasler, J. F. (2000). In-vitro production of cattle embryos: problems with pregnancies and parturition. Hum. Reprod. 15, 47–58.
| In-vitro production of cattle embryos: problems with pregnancies and parturition.Crossref | GoogleScholarGoogle Scholar | 11263537PubMed |
Ho, Y., Wigglesworth, K., Eppig, J. J., and Schultz, R. M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev. 41, 232–238.
| Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVGqu7w%3D&md5=b964ab5715f98d231e136e992b288635CAS | 7654376PubMed |
Holm, P., Booth, P. J., and Callesen, H. (2002). Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 123, 553–565.
| Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtbs%3D&md5=056fd5ab03152ecc6f78f96be72ba556CAS | 11914118PubMed |
Huang, J., and Dynan, W. S. (2002). Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction. Nucleic Acids Res. 30, 667–674.
| Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVyhsbc%3D&md5=c929ac8926bc3bcfe295cd29e81486cbCAS | 11809878PubMed |
Johnson, M. H. (2002). Introduction: only the best conceptus will do! But what does best mean? In ‘Assessment of Embryo Quality: Invasive and Non-invasive Techniques’. (Eds A. Van Soom and M. L. Boerjan.) p. xv. (Springer Science + Business Media: Dordrecht.)
Kafer, G. R., Kaye, P. L., Pantaleon, M., Moser, R. J., and Lehnert, S. A. (2011). In vitro manipulation of mammalian preimplantation embryos can alter transcript abundance of histone variants and associated factors. Cell. Reprogram. 13, 391–401.
| 1:CAS:528:DC%2BC3MXhtlCgt73E&md5=76c4e1a9871d63e61b0b6203bc661efdCAS | 21827322PubMed |
Kanka, J., Bryova, A., Duranthon, V., Oudin, J. F., Peynot, N., and Renard, J. P. (2003). Identification of differentially expressed mRNAs in bovine preimplantation embryos. Zygote 11, 43–52.
| Identification of differentially expressed mRNAs in bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1Wgs74%3D&md5=881ae4f067467b816592077aac9a178fCAS | 12625528PubMed |
Karagenc, L., Sertkaya, Z., Ciray, N., Ulug, U., and Bahçeci, M. (2004). Impact of oxygen concentration on embryonic development of mouse zygotes. Reprod. Biomed. Online 9, 409–417.
| Impact of oxygen concentration on embryonic development of mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crkt1OksQ%3D%3D&md5=d02f0edb95ae112bfa8f120fd9381090CAS | 15511341PubMed |
Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M., Gaughan, J. P., Coutifaris, C., and Sapienza, C. (2009). DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum. Mol. Genet. 18, 3769–3778.
| DNA methylation and gene expression differences in children conceived in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhurfE&md5=b3c0dc1ce7300112db9941464696ca5eCAS | 19605411PubMed |
Khosla, S., Dean, W., Reik, W., and Feil, R. (2001). Culture of preimplantation embryos and its long-term effects on gene expression and phenotype. Hum. Reprod. Update 7, 419–427.
| Culture of preimplantation embryos and its long-term effects on gene expression and phenotype.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVKjtLo%3D&md5=6d85af009473e1ccd8e1ea8d63d7fe37CAS | 11476355PubMed |
Kirkegaard, K., Kesmodel, U. S., Hindkjaer, J. J., and Ingerslev, H. J. (2013). Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a pros-pective cohort study. Hum. Reprod. 28, 2643–2651.
| Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a pros-pective cohort study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sflt1Ciug%3D%3D&md5=3f215506eeb84bc39530e6aa61824e93CAS | 23900207PubMed |
Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., Nakanishi, T., Ikawa, M., Hamada, H., Abe, K., and Okabe, M. (2006). Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr. Biol. 16, 166–172.
| Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2mtw%3D%3D&md5=8abd263bc817e5336c83ab004774f226CAS | 16431368PubMed |
Kola, I., Trounson, A., Dawson, G., and Rogers, P. (1987). Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos. Biol. Reprod. 37, 395–401.
| Tripronuclear human oocytes: altered cleavage patterns and subsequent karyotypic analysis of embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FltFSqsQ%3D%3D&md5=fc14171a5a6eb3ec9c08436013038b9bCAS | 3676394PubMed |
Lane, M. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
| Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsr8%3D&md5=ce5b0bc34c936ae2b1569ce995e29089CAS | 12773416PubMed |
Lane, M., Hooper, K., and Gardner, D. K. (2001). Effect of essential amino acids on mouse embryo viability and ammonium production. J. Assist. Reprod. Genet. 18, 519–525.
| Effect of essential amino acids on mouse embryo viability and ammonium production.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MrmsVKitQ%3D%3D&md5=bfd1c82c6852ab161dc6c4e23a025448CAS | 11665668PubMed |
Lee, S. E., Bressan, D. A., Petrini, J. H., and Haber, J. E. (2002). Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amst.) 1, 27–40.
| Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVansrY%3D&md5=de29c129334af3f4a3148e4ab85f4fd4CAS | 12509295PubMed |
Lemmen, J. G., Agerholm, I., and Ziebe, S. (2008). Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17, 385–391.
| Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crnslSguw%3D%3D&md5=73e30359f0f98f59f9feced58ebe67a8CAS | 18765009PubMed |
Lequarre, A.-S., Marchandise, J., Moreau, B., Massip, A., and Donnay, I. (2003). Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition. Biol. Reprod. 69, 1707–1713.
| Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2rs70%3D&md5=95736546594bb960f8f0655fd3323197CAS | 12890737PubMed |
Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P., and Boland, M. P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. J. Reprod. Fertil. 117, 159–167.
| Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlaltLo%3D&md5=330f5fe4800b6cb949cdb662e1dfd741CAS | 10645257PubMed |
Lonergan, P., Gutierrez-Adan, A., Pintado, B., Fair, T., Ward, F., Fuente, J. D., and Boland, M. (2000). Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol. Reprod. Dev. 57, 146–152.
| Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVeisb0%3D&md5=69923a59d40477fbed15566e43520527CAS | 10984414PubMed |
Luke, B., Brown, M. B., Grainger, D. A., Baker, V. L., Ginsburg, E., and Stern, J. E. (2009). The sex ratio of singleton offspring in assisted-conception pregnancies. Fertil. Steril. 92, 1579–1585.
| The sex ratio of singleton offspring in assisted-conception pregnancies.Crossref | GoogleScholarGoogle Scholar | 18950756PubMed |
Luna, M., Duke, M., Copperman, A., Grunfeld, L., Sandler, B., and Barritt, J. (2007). Blastocyst embryo transfer is associated with a sex-ratio imbalance in favor of male offspring. Fertil. Steril. 87, 519–523.
| Blastocyst embryo transfer is associated with a sex-ratio imbalance in favor of male offspring.Crossref | GoogleScholarGoogle Scholar | 17118368PubMed |
Magli, M. C., Gianaroli, L., Munné, S., and Ferraretti, A. P. (1998). Incidence of chromosomal abnormalities from a morphologically normal cohort of embryos in poor-prognosis patients. J. Assist. Reprod. Genet. 15, 297–301.
| Incidence of chromosomal abnormalities from a morphologically normal cohort of embryos in poor-prognosis patients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3mvVWhsA%3D%3D&md5=9a8bcfc148ae313bee70a510d38f8715CAS | 9604763PubMed |
Magli, M. C., Gianaroli, L., and Ferraretti, A. P. (2001). Chromosomal abnormalities in embryos. Mol. Cell. Endocrinol. 183, S29–S34.
| Chromosomal abnormalities in embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVCmu7k%3D&md5=309260933be4975a1a5cdbd30ab699e0CAS | 11576729PubMed |
Mann, M. R. W., Lee, S. S., Doherty, A. S., Verona, R. I., Nolen, L. D., Schultz, R. M., and Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–3735.
| Selective loss of imprinting in the placenta following preimplantation development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1elt7c%3D&md5=2a17461126a5a87095fbadfa8992dce2CAS |
Market-Velker, B. A., Fernandes, A. D., and Mann, M. R. W. (2010a). Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance. Biol. Reprod. 83, 938–950.
| Side-by-side comparison of five commercial media systems in a mouse model: suboptimal in vitro culture interferes with imprint maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfK&md5=57f240259fc5c5ae3bfd9602ce4a7f6dCAS | 20702853PubMed |
Market-Velker, B. A., Zhang, L., Magri, L. S., Bonvissuto, A. C., and Mann, M. R. W. (2010b). Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19, 36–51.
| Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7jL&md5=b8cca1dce26e18349a044f37588dd87fCAS | 19805400PubMed |
Market Velker, B. A., Denomme, M. M., and Mann, M. R. W. (2012). Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol. Reprod. 86, 143.
| Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture.Crossref | GoogleScholarGoogle Scholar | 22278980PubMed |
McKiernan, S. H., and Bavister, B. D. (1994). Fertilization and early embryology: timing of development is a critical parameter for predicting successful embryogenesis. Hum. Reprod. 9, 2123–2129.
| 1:STN:280:DyaK2M7ntlWqsg%3D%3D&md5=d211296389722d0ce409f94e8b0373c9CAS | 7868684PubMed |
Meintjes, M., Chantilis, S. J., Douglas, J. D., Rodriguez, A. J., Guerami, A. R., Bookout, D. M., Barnett, B. D., and Madden, J. D. (2009). A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum. Reprod. 24, 300–307.
| A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program.Crossref | GoogleScholarGoogle Scholar | 18927130PubMed |
Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K. M., Ramsing, N. B., and Remohí, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
| The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |
Morgan, H. D., Jin, X. L., Li, A., Whitelaw, E., and O’Neill, C. (2008). The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, Agouti viable yellow, in mice. Biol. Reprod. 79, 618–623.
| The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, Agouti viable yellow, in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbbN&md5=a04a0de11f9d6f2e181065fe4afdbbb7CAS | 18562706PubMed |
Ober, C., Loisel, D. A., and Gilad, Y. (2008). Sex-specific genetic architecture of human disease. Nat. Rev. Genet. 9, 911–922.
| Sex-specific genetic architecture of human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyhtbnP&md5=d5f57747a0ab3b2fc9fed891ec4fb2eaCAS | 19002143PubMed |
Payne, D., Flaherty, S. P., Barry, M. F., and Matthews, C. D. (1997). Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography. Hum. Reprod. 12, 532–541.
| Preliminary observations on polar body extrusion and pronuclear formation in human oocytes using time-lapse video cinematography.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3nslSlsA%3D%3D&md5=910a235023e9cfd03d39d0f79686c17fCAS | 9130755PubMed |
Peippo, J., and Bredbacka, P. (1995). Sex-related growth rate differences in mouse preimplantation embryos in vivo and in vitro. Mol. Reprod. Dev. 40, 56–61.
| Sex-related growth rate differences in mouse preimplantation embryos in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivFyrsrc%3D&md5=0651f6d958a44c9729ae587bff2a7894CAS | 7702870PubMed |
Pergament, E., Fiddler, M., Cho, N., Johnson, D., and Holmgren, W. J. (1994). Sexual differentiation and preimplantation cell growth. Hum. Reprod. 9, 1730–1732.
| 1:STN:280:DyaK2M7jvVaksw%3D%3D&md5=0656f9bbbc749b9dd38e92c707ea996cCAS | 7836527PubMed |
Perin, P. M., Maluf, M., Nicolosi Foltran Januario, D. A., and Nascimento Saldiva, P. H. (2008). Comparison of the efficacy of two commercially available media for culturing one-cell embryos in the in vitro fertilization mouse model. Fertil. Steril. 90, 1503–1510.
| Comparison of the efficacy of two commercially available media for culturing one-cell embryos in the in vitro fertilization mouse model.Crossref | GoogleScholarGoogle Scholar | 18222426PubMed |
Pers-Kamczyc, E., Pawlak, P., Rubes, J., and Lechniak, D. (2012). Early cleaved bovine embryos show reduced incidence of chromosomal aberrations and higher developmental potential on Day 4.5 post-insemination. Reprod. Domest. Anim. 47, 899–906.
| Early cleaved bovine embryos show reduced incidence of chromosomal aberrations and higher developmental potential on Day 4.5 post-insemination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vhvFyisA%3D%3D&md5=70239285e7b272557d48f6b8b1734921CAS | 22304363PubMed |
Pribenszky, C., Losonczi, E., Molnár, M., Lang, Z., Mátyás, S., Rajczy, K., Molnár, K., Kovács, P., Nagy, P., Conceicao, J., and Vajta, G. (2010). Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment. Reprod. Biomed. Online 20, 371–379.
| Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment.Crossref | GoogleScholarGoogle Scholar | 20089456PubMed |
Quinn, P., and Harlow, G. M. (1978). The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 206, 73–80.
| The effect of oxygen on the development of preimplantation mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlslOjsbs%3D&md5=b882743b0850a40d90bb20c88af5a04aCAS | 702089PubMed |
Racowsky, C., Jackson, K. V., Cekleniak, N. A., Fox, J. H., Hornstein, M. D., and Ginsburg, E. S. (2000). The number of eight-cell embryos is a key determinant for selecting Day 3 or Day 5 transfer. Fertil. Steril. 73, 558–564.
| The number of eight-cell embryos is a key determinant for selecting Day 3 or Day 5 transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ls1eisw%3D%3D&md5=862651163b122e231803f965d8751437CAS | 10689013PubMed |
Rinaudo, P., and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128, 301–311.
| Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitLg%3D&md5=364c53eb6c89704c7f610c1ae77d35b7CAS | 15333781PubMed |
Rinaudo, P. F., Giritharan, G., Tabli, S., Dobson, A. T., and Schultz, R. M. (2006). Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil. Steril. 86, 1265.e1–1265.e36.
| Effects of oxygen tension on gene expression in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar |
Rivera, R. M., Stein, P., Weaver, J. R., Mager, J., Schultz, R. M., and Bartolomei, M. S. (2008). Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development. Hum. Mol. Genet. 17, 1–14.
| Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKiur%2FJ&md5=18c99e6eece81b0e34d7e759bebafb37CAS | 17901045PubMed |
Sakkas, D., Shoukir, Y., Chardonnens, D., Bianchi, P. G., and Campana, A. (1998). Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability. Hum. Reprod. 13, 182–187.
| Early cleavage of human embryos to the two-cell stage after intracytoplasmic sperm injection as an indicator of embryo viability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7ntFajtQ%3D%3D&md5=41b7d8d1247a5b66a7bcaf30cebfb5d9CAS | 9512254PubMed |
Salumets, A., Hydén-Granskog, C., Mäkinen, S., Suikkari, A.-M., Tiitinen, A., and Tuuri, T. (2003). Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures. Hum. Reprod. 18, 821–825.
| Early cleavage predicts the viability of human embryos in elective single embryo transfer procedures.Crossref | GoogleScholarGoogle Scholar | 12660278PubMed |
Sasaki, H., Ferguson-Smith, A. C., Shum, A. S., Barton, S. C., and Surani, M. A. (1995). Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development 121, 4195–4202.
| 1:CAS:528:DyaK28XhvFSqsA%3D%3D&md5=071111aa140cd0790d3e2be8dabe382eCAS | 8575319PubMed |
Schwarzer, C., Esteves, T. C., Arauzo-Bravo, M. J., Le Gac, S., Nordhoff, V., Schlatt, S., and Boiani, M. (2012). ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses. Hum. Reprod. 27, 2627–2640.
| ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1WlsbzP&md5=4af1304762398e60a12405a2a1525ba6CAS | 22736328PubMed |
Shi, W., and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
| Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSnsbg%3D&md5=58d24e2910dc1a4bfed53a7a58a88786CAS | 12237948PubMed |
Shoukir, Y., Campana, A., Farley, T., and Sakkas, D. (1997). Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability. Hum. Reprod. 12, 1531–1536.
| Early cleavage of in-vitro fertilized human embryos to the 2-cell stage: a novel indicator of embryo quality and viability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svgsVajtw%3D%3D&md5=1a596f7c71ea1a7de3d44f786b76dcedCAS | 9262291PubMed |
Somfai, T., Inaba, Y., Aikawa, Y., Ohtake, M., Kobayashi, S., Konishi, K., and Imai, K. (2010). Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis. J. Reprod. Dev. 56, 200–207.
| Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 20035110PubMed |
Sugimura, S., Akai, T., Somfai, T., Hirayama, M., Aikawa, Y., Ohtake, M., Hattori, H., Kobayashi, S., Hashiyada, Y., Konishi, K., and Imai, K. (2010). Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol. Reprod. 83, 970–978.
| Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahu77I&md5=74f586fd68b05e7f07c660d6ff676742CAS | 20739661PubMed |
Suzuki, J., Therrien, J., Filion, F., Lefebvre, R., Goff, A. K., and Smith, L. C. (2009). In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev. Biol. 9, 9.
| In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle.Crossref | GoogleScholarGoogle Scholar | 19200381PubMed |
Swain, J. E. (2013). Could time-lapse embryo imaging reduce the need for biopsy and PGS? J. Assist. Reprod. Genet. 30, 1081–1090.
| Could time-lapse embryo imaging reduce the need for biopsy and PGS?Crossref | GoogleScholarGoogle Scholar | 23842747PubMed |
Tarin, J. J., Bernabeu, R., Baviera, A., Bonada, M., and Cano, A. (1995). Sex selection may be inadvertently performed in in-vitro fertilization-embryo transfer programmes. Hum. Reprod. 10, 2992–2998.
| 1:STN:280:DyaK28zls1Srsw%3D%3D&md5=42789e42d41d1edf2c3b197f4803b68bCAS | 8747060PubMed |
Taylor, D. M., Handyside, A. H., Ray, P. F., Dibb, N. J., Winston, R. M., and Ao, A. (2001). Quantitative measurement of transcript levels throughout human preimplantation development: analysis of hypoxanthine phosphoribosyl transferase. Mol. Hum. Reprod. 7, 147–154.
| Quantitative measurement of transcript levels throughout human preimplantation development: analysis of hypoxanthine phosphoribosyl transferase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFahsbY%3D&md5=be4e9f964d6f163b0cbaa5f35ff76960CAS | 11160840PubMed |
Thatcher, S. S., Restrepo, U., Lavy, G., and DeCherney, A. H. (1989). In-vitro fertilisation and sex ratio. Lancet 333, 1025–1026.
| In-vitro fertilisation and sex ratio.Crossref | GoogleScholarGoogle Scholar |
Tsunoda, Y., Tokunaga, T., and Sugie, T. (1985). Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos. Gamete Research 12, 301–304.
| Altered sex ratio of live young after transfer of fast- and slow-developing mouse embryos.Crossref | GoogleScholarGoogle Scholar |
Van Montfoort, A. P. A., Dumoulin, J. C. M., Kester, A. D. M., and Evers, J. L. H. (2004). Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum. Reprod. 19, 2103–2108.
| Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers.Crossref | GoogleScholarGoogle Scholar |
Van Soom, A., Van Vlaenderen, I., Mahmoudzadeh, A. R., Deluyker, H., and de Kruif, A. (1992). Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology 38, 905–919.
| Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvF2msw%3D%3D&md5=42d0310152a83f68e2c8037537a87281CAS | 16727189PubMed |
van Soom, A., Ysebaert, M. T., and de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Mol. Reprod. Dev. 47, 47–56.
| Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislGnurw%3D&md5=5d557ddb18b6d4be539739a37686c1bdCAS | 9110314PubMed |
Vandaele, L., Mateusen, B., Maes, D., de Kruif, A., and Van Soom, A. (2006). Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility? Theriogenology 65, 1691–1703.
| Is apoptosis in bovine in vitro produced embryos related to early developmental kinetics and in vivo bull fertility?Crossref | GoogleScholarGoogle Scholar | 16280159PubMed |
Vandaele, L., Mateusen, B., Maes, D. G. D., de Kruif, A., and van Soom, A. (2007). Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction 133, 709–718.
| Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku70%3D&md5=989a7e08a95aebee9996c71aa656eab3CAS | 17504915PubMed |
Vandaele, L., Thys, M., Bijttebier, J., Van Langendonckt, A., Donnay, I., Maes, D., Meyer, E., and Van Soom, A. (2010). Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development. Reproduction 139, 505–511.
| Short-term exposure to hydrogen peroxide during oocyte maturation improves bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2lsb8%3D&md5=bb71329792a43a5967613e707b16376eCAS | 19939885PubMed |
Wale, P. L., and Gardner, D. K. (2010). Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod. Biomed. Online 21, 402–410.
| Time-lapse analysis of mouse embryo development in oxygen gradients.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cfgtVGnsQ%3D%3D&md5=c8b0cfc40d09bd58ba706d0adfaf1bd1CAS | 20691637PubMed |
Ward, F., Rizos, D., Corridan, D., Quinn, K., Boland, M., and Lonergan, P. (2001). Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo. Mol. Reprod. Dev. 60, 47–55.
| Paternal influence on the time of first embryonic cleavage post insemination and the implications for subsequent bovine embryo development in vitro and fertility in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWisrY%3D&md5=99eb86a932be3b6cd8f27eb180419998CAS | 11550267PubMed |
Weitzman, V. N., Schnee-Riesz, J., Benadiva, C., Nulsen, J., Siano, L., and Maier, D. (2010). Predictive value of embryo grading for embryos with known outcomes. Fertil. Steril. 93, 658–662.
| Predictive value of embryo grading for embryos with known outcomes.Crossref | GoogleScholarGoogle Scholar | 19410247PubMed |
Wells, D., Alfarawati, S., and Fragouli, E. (2011). A skewed sex ratio following blastocyst culture is a consequence of embryo grading systems that prioritise male embryos for transfer. BJOG 118, 381.
| A skewed sex ratio following blastocyst culture is a consequence of embryo grading systems that prioritise male embryos for transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFSmsg%3D%3D&md5=82c33fc958ff9d76d340d4d423086da5CAS | 21226834PubMed |
Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., De Jonge, C. J., Baer, T. M., and Reijo Pera, R. A. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.
| Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1elurfF&md5=fe38e309534cfe0536fc86ef86466d6bCAS | 20890283PubMed |
Wong, C., Chen, A. A., Behr, B., and Shen, S. (2013). Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod. Biomed. Online 26, 120–129.
| Time-lapse microscopy and image analysis in basic and clinical embryo development research.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3lt1GjtA%3D%3D&md5=fff68408c84d23a6fa97292b9164a763CAS | 23273754PubMed |
Wrenzycki, C., Lucas-Hahn, A., Herrmann, D., Lemme, E., Korsawe, K., and Niemann, H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod. 66, 127–134.
| In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yktw%3D%3D&md5=5eac01678ae3ea4db3e15175c106a246CAS | 11751274PubMed |
Wright, K., Brown, L., Brown, G., Casson, P., and Brown, S. (2011). Microarray assessment of methylation in individual mouse blastocyst stage embryos shows that in vitro culture may have widespread genomic effects. Hum. Reprod. 26, 2576–2585.
| Microarray assessment of methylation in individual mouse blastocyst stage embryos shows that in vitro culture may have widespread genomic effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVynsr3K&md5=596c3423a0b5e52b0bb2406332cd9317CAS | 21685140PubMed |
Xu, K. P., Yadav, B. R., King, W. A., and Betteridge, K. J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Mol. Reprod. Dev. 31, 249–252.
| Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383jvFWnug%3D%3D&md5=8a85e654d88507fd9586918e3e7ce03aCAS | 1571158PubMed |
Zaitseva, I., Zaitsev, S., Alenina, N., Bader, M., and Krivokharchenko, A. (2007). Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol. Reprod. Dev. 74, 1255–1261.
| Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCmsbfN&md5=a1d0079a2d977f36ad51f7b96ef5813bCAS | 17290422PubMed |
Ziebe, S. (2014). Morphometric analysis of human embryos to predict developmental competence. Reprod. Fertil. Dev. 26, 55–64.
| Morphometric analysis of human embryos to predict developmental competence.Crossref | GoogleScholarGoogle Scholar |