Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Epigenetic processes in the male germline

Alan M. O’Doherty A C and Paul A. McGettigan B
+ Author Affiliations
- Author Affiliations

A School of Medicine and Medical Sciences, Health Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland.

B School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

C Corresponding author. Email: alan.odoherty@ucd.ie

Reproduction, Fertility and Development 27(5) 725-738 https://doi.org/10.1071/RD14167
Submitted: 20 May 2014  Accepted: 1 August 2014   Published: 9 September 2014

Abstract

Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.

Additional keywords: chromatin, DNA methylation, gametogenesis, histones, non-coding RNA, spermatogenesis, spermatozoa, transgenerational inheritance.


References

Anway, M. D., Cupp, A. S., Uzumcu, M., and Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466–1469.
Epigenetic transgenerational actions of endocrine disruptors and male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1eqsbY%3D&md5=05d42e23f3872a7670bad89c3f6eb436CAS | 15933200PubMed |

Anway, M. D., Leathers, C., and Skinner, M. K. (2006). Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology 147, 5515–5523.
Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqsbfI&md5=b55291fe83f981fe4c94c4f6b802ec71CAS | 16973726PubMed |

Aoki, F., Worrad, D. M., and Schultz, R. M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307.
Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpt1Omtw%3D%3D&md5=7c0c8f2f06bc08a91cc0f2e4ad192654CAS | 9013938PubMed |

Arpanahi, A., Brinkworth, M., Iles, D., Krawetz, S. A., Paradowska, A., Platts, A. E., Saida, M., Steger, K., Tedder, P., and Miller, D. (2009). Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 19, 1338–1349.
Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpvFOntLw%3D&md5=0dfe50a35a564d08bab3c878e48c7a96CAS | 19584098PubMed |

Balhorn, R. (1982). A model for the structure of chromatin in mammalian sperm. J. Cell Biol. 93, 298–305.
A model for the structure of chromatin in mammalian sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktVamsbo%3D&md5=c3e55f79d706480b22241828ae316fccCAS | 7096440PubMed |

Balhorn, R., Gledhill, B. L., and Wyrobek, A. J. (1977). Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 16, 4074–4080.
Mouse sperm chromatin proteins: quantitative isolation and partial characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXlsVOnsb0%3D&md5=2a602af93d04b0915a9f1e86588670f9CAS | 911755PubMed |

Bao, J., Wu, J., Schuster, A. S., Hennig, G. W., and Yan, W. (2013). Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol. Reprod. 89, 107.
Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline.Crossref | GoogleScholarGoogle Scholar | 24048575PubMed |

Barouki, R., Gluckman, P. D., Grandjean, P., Hanson, M., and Heindel, J. J. (2012). Developmental origins of non-communicable disease: implications for research and public health. Environ. Health 11, 42.
Developmental origins of non-communicable disease: implications for research and public health.Crossref | GoogleScholarGoogle Scholar | 22715989PubMed |

Barreto, G., Schafer, A., Marhold, J., Stach, D., Swaminathan, S. K., Handa, V., Doderlein, G., Maltry, N., Wu, W., Lyko, F., and Niehrs, C. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675.
Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOrtb4%3D&md5=84532687eefafe72b71b30fae55c411cCAS | 17268471PubMed |

Barton, S. C., Surani, M. A., and Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.
Role of paternal and maternal genomes in mouse development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fht1Kkug%3D%3D&md5=49ea3c954a643e21303e668e5e1f8481CAS | 6482961PubMed |

Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004). Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. 14, R266–R267.
Non-conservation of mammalian preimplantation methylation dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKltb4%3D&md5=6fcd265512bd975c345755664ad4ac41CAS | 15062117PubMed |

Benchaib, M., Braun, V., Ressnikof, D., Lornage, J., Durand, P., Niveleau, A., and Guerin, J. F. (2005). Influence of global sperm DNA methylation on IVF results. Hum. Reprod. 20, 768–773.
Influence of global sperm DNA methylation on IVF results.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsFSgtrk%3D&md5=2d8b85db26bfd9ba735b47f033d4bec4CAS | 15640258PubMed |

Bender, J., and Fink, G. R. (1995). Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83, 725–734.
Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVehtL8%3D&md5=79b74b3dd4bc82ff214c293d69496311CAS | 8521489PubMed |

Bhattacharya, S. K., Ramchandani, S., Cervoni, N., and Szyf, M. (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397, 579–583.
A mammalian protein with specific demethylase activity for mCpG DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtlOmu7Y%3D&md5=d08370c3182c0c01e12265598993a767CAS | 10050851PubMed |

Bird, A. (2013). Genome biology: not drowning but waving. Cell 154, 951–952.
Genome biology: not drowning but waving.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGqsLnI&md5=c613c86ed57002888c07c1ee2315762cCAS | 23993086PubMed |

Boerschmann, H., Pfluger, M., Henneberger, L., Ziegler, A. G., and Hummel, S. (2010). Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus. Diabetes Care 33, 1845–1849.
Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 20435793PubMed |

Borgel, J., Guibert, S., Li, Y., Chiba, H., Schubeler, D., Sasaki, H., Forne, T., and Weber, M. (2010). Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42, 1093–1100.
Targets and dynamics of promoter DNA methylation during early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2jtrfJ&md5=6e63ca6420597be6777aa5d6ed72dbe4CAS | 21057502PubMed |

Bourc’his, D., and Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99.
Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCksrc%3D&md5=559c8114fbad1c21c2a20cdf142342adCAS | 15318244PubMed |

Bourc’his, D., and Proudhon, C. (2008). Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol. Cell. Endocrinol. 282, 87–94.
Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegtLs%3D&md5=0cc99ff734acf50bc70dc494bb4e27f3CAS | 18178305PubMed |

Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., and Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539.
Dnmt3L and the establishment of maternal genomic imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Or&md5=971097c0eaf8c3771c9cf56f036d3568CAS | 11719692PubMed |

Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E. J., Roloff, T. C., Beisel, C., Schubeler, D., Stadler, M. B., and Peters, A. H. (2010). Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat. Struct. Mol. Biol. 17, 679–687.
Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFalur8%3D&md5=102ffb39c7407378fba6679133082f4cCAS | 20473313PubMed |

Burdge, G. C., Slater-Jefferies, J., Torrens, C., Phillips, E. S., Hanson, M. A., and Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97, 435–439.
Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVSitbY%3D&md5=f820ad80ee3d06a7631178dce76afa0cCAS | 17313703PubMed |

Cai, X., and Cullen, B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13, 313–316.
The imprinted H19 noncoding RNA is a primary microRNA precursor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFCks74%3D&md5=a4c10f92f35980f2beecc5d90922e821CAS | 17237358PubMed |

Carmell, M. A., Girard, A., van de Kant, H. J., Bourc’his, D., Bestor, T. H., de Rooij, D. G., and Hannon, G. J. (2007). MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12, 503–514.
MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVOhsL4%3D&md5=11482126c0be57b70d9ffbfc95b25755CAS | 17395546PubMed |

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., Kodzius, R., Shimokawa, K., Bajic, V. B., Brenner, S. E., Batalov, S., Forrest, A. R., Zavolan, M., Davis, M. J., Wilming, L. G., Aidinis, V., Allen, J. E., Ambesi-Impiombato, A., Apweiler, R., Aturaliya, R. N., Bailey, T. L., Bansal, M., Baxter, L., Beisel, K. W., Bersano, T., Bono, H., Chalk, A. M., Chiu, K. P., Choudhary, V., Christoffels, A., Clutterbuck, D. R., Crowe, M. L., Dalla, E., Dalrymple, B. P., de Bono, B., Della Gatta, G., di Bernardo, D., Down, T., Engstrom, P., Fagiolini, M., Faulkner, G., Fletcher, C. F., Fukushima, T., Furuno, M., Futaki, S., Gariboldi, M., Georgii-Hemming, P., Gingeras, T. R., Gojobori, T., Green, R. E., Gustincich, S., Harbers, M., Hayashi, Y., Hensch, T. K., Hirokawa, N., Hill, D., Huminiecki, L., Iacono, M., Ikeo, K., Iwama, A., Ishikawa, T., Jakt, M., Kanapin, A., Katoh, M., Kawasawa, Y., Kelso, J., Kitamura, H., Kitano, H., Kollias, G., Krishnan, S. P., Kruger, A., Kummerfeld, S. K., Kurochkin, I. V., Lareau, L. F., Lazarevic, D., Lipovich, L., Liu, J., Liuni, S., McWilliam, S., Madan Babu, M., Madera, M., Marchionni, L., Matsuda, H., Matsuzawa, S., Miki, H., Mignone, F., Miyake, S., Morris, K., Mottagui-Tabar, S., Mulder, N., Nakano, N., Nakauchi, H., Ng, P., Nilsson, R., Nishiguchi, S., Nishikawa, S., Nori, F., Ohara, O., Okazaki, Y., Orlando, V., Pang, K. C., Pavan, W. J., Pavesi, G., Pesole, G., Petrovsky, N., Piazza, S., Reed, J., Reid, J. F., Ring, B. Z., Ringwald, M., Rost, B., Ruan, Y., Salzberg, S. L., Sandelin, A., Schneider, C., Schonbach, C., Sekiguchi, K., Semple, C. A., Seno, S., Sessa, L., Sheng, Y., Shibata, Y., Shimada, H., Shimada, K., Silva, D., Sinclair, B., Sperling, S., Stupka, E., Sugiura, K., Sultana, R., Takenaka, Y., Taki, K., Tammoja, K., Tan, S. L., Tang, S., Taylor, M. S., Tegner, J., Teichmann, S. A., Ueda, H. R., van Nimwegen, E., Verardo, R., Wei, C. L., Yagi, K., Yamanishi, H., Zabarovsky, E., Zhu, S., Zimmer, A., Hide, W., Bult, C., Grimmond, S. M., Teasdale, R. D., Liu, E. T., Brusic, V., Quackenbush, J., Wahlestedt, C., Mattick, J. S., Hume, D. A., Kai, C., Sasaki, D., Tomaru, Y., Fukuda, S., Kanamori-Katayama, M., Suzuki, M., Aoki, J., Arakawa, T., Iida, J., Imamura, K., Itoh, M., Kato, T., Kawaji, H., Kawagashira, N., Kawashima, T., Kojima, M., Kondo, S., Konno, H., Nakano, K., Ninomiya, N., Nishio, T., Okada, M., Plessy, C., Shibata, K., Shiraki, T., Suzuki, S., Tagami, M., Waki, K., Watahiki, A., Okamura-Oho, Y., Suzuki, H., Kawai, J., Hayashizaki, Y.,, FANTOM Consortium, RIKEN Genome Exploration Research Group, and Genome Science Group (Genome Network Project Core Group) (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.
The transcriptional landscape of the mammalian genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWju7o%3D&md5=9a9e8b4b7aa45f6e03675548c687cb85CAS | 16141072PubMed |

Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A. R., Carninci, P., Biffo, S., Stupka, E., and Gustincich, S. (2012). Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457.
Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsV2rsLbM&md5=9ac2445c7a3f7d3c9a676fef55f0dd91CAS | 23064229PubMed |

Carrington, J. C., and Ambros, V. (2003). Role of microRNAs in plant and animal development. Science 301, 336–338.
Role of microRNAs in plant and animal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1yiu78%3D&md5=80a6292751ee1ac0c89acc901877d0c2CAS | 12869753PubMed |

Carthew, R. W., and Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655.
Origins and mechanisms of miRNAs and siRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGksb0%3D&md5=5c752c8a2125b0875f60e9d43554936aCAS | 19239886PubMed |

Chandler, V. L., and Stam, M. (2004). Chromatin conversations: mechanisms and implications of paramutation. Nat. Rev. Genet. 5, 532–544.
Chromatin conversations: mechanisms and implications of paramutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVSmsb8%3D&md5=21c541649723fc91099254da01f4cd19CAS | 15211355PubMed |

Chong, S., and Whitelaw, E. (2004). Epigenetic germline inheritance. Curr. Opin. Genet. Dev. 14, 692–696.
Epigenetic germline inheritance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVOrtLs%3D&md5=e5424aae8472e82138415074fc953cceCAS | 15531166PubMed |

Conrad, T., and Akhtar, A. (2012). Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat. Rev. Genet. 13, 123–134.
Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1CktA%3D%3D&md5=493b689ca62be6f073481ac452138fc1CAS | 22251873PubMed |

Cortessis, V. K. (2012). Commentary: rapid steps forward in environmental epigenetics: implications for epidemiologic investigation of chronic disease. Int. J. Epidemiol. 41, 1761–1763.
Commentary: rapid steps forward in environmental epigenetics: implications for epidemiologic investigation of chronic disease.Crossref | GoogleScholarGoogle Scholar | 23283718PubMed |

Cortessis, V. K., Thomas, D. C., Levine, A. J., Breton, C. V., Mack, T. M., Siegmund, K. D., Haile, R. W., and Laird, P. W. (2012). Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum. Genet. 131, 1565–1589.
Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmtrjO&md5=1a6917e30333555dff1b46c85c1992deCAS | 22740325PubMed |

Davis, T. L., Yang, G. J., McCarrey, J. R., and Bartolomei, M. S. (2000). The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum. Mol. Genet. 9, 2885–2894.
The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslWmsLY%3D&md5=a51d940ec4aa9ebe4b9363a6f837615dCAS | 11092765PubMed |

Di Giacomo, M., Comazzetto, S., Saini, H., De Fazio, S., Carrieri, C., Morgan, M., Vasiliauskaite, L., Benes, V., Enright, A. J., and O’Carroll, D. (2013). Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell 50, 601–608.
Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotlGltLY%3D&md5=fc14ed401b05255d867771119e2f1c9aCAS | 23706823PubMed |

Dias, B. G., and Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat. Neurosci. 17, 89–96.
Parental olfactory experience influences behavior and neural structure in subsequent generations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGqs7rE&md5=e10999e50dc61ce79ce7a8ad3a5ca622CAS | 24292232PubMed |

Eckhart, L., Lippens, S., Tschachler, E., and Declercq, W. (2013). Cell death by cornification. Biochim. Biophys. Acta 1833, 3471–3480.
Cell death by cornification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlsr%2FO&md5=99a520ce74db4d50e38109bf274d0226CAS | 23792051PubMed |

Eirín-López, J. M., Frehlick, L. J., and Ausió, J. (2006). Protamines, in the footsteps of linker histone evolution. J. Biol. Chem. 281, 1–4.
Protamines, in the footsteps of linker histone evolution.Crossref | GoogleScholarGoogle Scholar | 16243843PubMed |

Engel, N., Tront, J. S., Erinle, T., Nguyen, N., Latham, K. E., Sapienza, C., Hoffman, B., and Liebermann, D. A. (2009). Conserved DNA methylation in Gadd45a(–/–) mice. Epigenetics 4, 98–99.
Conserved DNA methylation in Gadd45a(–/–) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlWmsrs%3D&md5=5a26f1acc6a1c6da2679409484cfad14CAS | 19229137PubMed |

Feil, R., and Fraga, M. F. (2011). Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109.

Feng, S., Jacobsen, S. E., and Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science 330, 622–627.
Epigenetic reprogramming in plant and animal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7fM&md5=0aa87eb2a77893bd23e4ebf1c7d75edaCAS | 21030646PubMed |

Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtlWgsrg%3D&md5=a50d3457d115f4e53d5a073d213ef23cCAS | 24728267PubMed |

González, R. M., Ricardi, M. M., and Iusem, N. D. (2013). Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8, 864–872.
Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions.Crossref | GoogleScholarGoogle Scholar | 23807313PubMed |

Goriely, A., and Wilkie, A. O. (2012). Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease. Am. J. Hum. Genet. 90, 175–200.
Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFyjuro%3D&md5=fa05ac2694eb4fd87974f0811bef6fdbCAS | 22325359PubMed |

Gou, L. T., Dai, P., Yang, J. H., Xue, Y., Hu, Y. P., Zhou, Y., Kang, J. Y., Wang, X., Li, H., Hua, M. M., Zhao, S., Hu, S. D., Wu, L. G., Shi, H. J., Li, Y., Fu, X. D., Qu, L. H., Wang, E. D., and Liu, M. F. (2014). Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 24, 680–700.
Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlOgsLk%3D&md5=cf2698586235516dc595422fad128736CAS | 24787618PubMed |

Gu, A., Ji, G., Shi, X., Long, Y., Xia, Y., Song, L., Wang, S., and Wang, X. (2010). Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population. Hum. Reprod. 25, 2955–2961.
Genetic variants in Piwi-interacting RNA pathway genes confer susceptibility to spermatogenic failure in a Chinese population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgsbfN&md5=fc2f41963b929aea25a9357c21c55283CAS | 20940137PubMed |

Guerrero-Bosagna, C., Settles, M., Lucker, B., and Skinner, M. K. (2010). Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 5, e13100.
Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.Crossref | GoogleScholarGoogle Scholar | 20927350PubMed |

Guibert, S., Forne, T., and Weber, M. (2012). Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res. 22, 633–641.
Global profiling of DNA methylation erasure in mouse primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1egsbs%3D&md5=879a2077890b59c561bf4a1e3bab0349CAS | 22357612PubMed |

Guo, H., Zhu, P., Wu, X., Li, X., Wen, L., and Tang, F. (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135.
Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCisLjN&md5=2387520f7a7d9db841895ed9c1e29a20CAS | 24179143PubMed |

Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., Jin, X., Shi, X., Liu, P., Wang, X., Wang, W., Wei, Y., Li, X., Guo, F., Wu, X., Fan, X., Yong, J., Wen, L., Xie, S. X., Tang, F., and Qiao, J. (2014). The DNA methylation landscape of human early embryos. Nature 511, 606–610.
The DNA methylation landscape of human early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurbK&md5=aceba7a079d5a92de1c20dfeab98138cCAS | 25079557PubMed |

Haas, B. J., Chin, M., Nusbaum, C., Birren, B. W., and Livny, J. (2012). How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13, 734.
How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFyjsr4%3D&md5=6c7c974018ec4170ee334e2eee017572CAS | 23270466PubMed |

Hackett, J. A., Zylicz, J. J., and Surani, M. A. (2012). Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 28, 164–174.
Parallel mechanisms of epigenetic reprogramming in the germline.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1yjt7w%3D&md5=0276f264f96cdf7487d26f5ce09e0b7cCAS | 22386917PubMed |

Haig, D., and Bergstrom, C. T. (1995). Multiple mating, sperm competition and meiotic drive. J. Evol. Biol. 8, 265–282.
Multiple mating, sperm competition and meiotic drive.Crossref | GoogleScholarGoogle Scholar |

Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J., and Surani, M. A. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 117, 15–23.
Epigenetic reprogramming in mouse primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVCrsrw%3D&md5=7fd7442a095bf3a1113f632a4799e534CAS | 12204247PubMed |

Hampton, T. (2004). Maternal diabetes and obesity may have lifelong impact on health of offspring. JAMA 292, 789–790.
Maternal diabetes and obesity may have lifelong impact on health of offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCgtLs%3D&md5=c2a9ebb3d3b81b624787cb1612aa257eCAS | 15315980PubMed |

Hansen, R. S., Wijmenga, C., Luo, P., Stanek, A. M., Canfield, T. K., Weemaes, C. M., and Gartler, S. M. (1999). The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14 412–14 417.
The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFKlu7g%3D&md5=3190732020bc26be046ce079ec584d19CAS |

Harris, R. A., Nagy-Szakal, D., and Kellermayer, R. (2013). Human metastable epiallele candidates link to common disorders. Epigenetics 8, 157–163.
Human metastable epiallele candidates link to common disorders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvVGgtr4%3D&md5=d15ad1de9da4d3676f4d862ed5dc564fCAS | 23321599PubMed |

Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993.
| 1:CAS:528:DC%2BD38XjslSls70%3D&md5=9e7b86e8ab4343f4c236c8d563cfb00bCAS | 11934864PubMed |

Hayashi, K., Chuva de Sousa Lopes, S. M., Kaneda, M., Tang, F., Hajkova, P., Lao, K., O’Carroll, D., Das, P. P., Tarakhovsky, A., Miska, E. A., and Surani, M. A. (2008). MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One 3, e1738.
MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 18320056PubMed |

He, S., Su, H., Liu, C., Skogerbo, G., He, H., He, D., Zhu, X., Liu, T., Zhao, Y., and Chen, R. (2008). MicroRNA-encoding long non-coding RNAs. BMC Genomics 9, 236.
MicroRNA-encoding long non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 18492288PubMed |

He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C. X., Zhang, K., He, C., and Xu, G. L. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nO&md5=39d78ed002160aa0f807e4d69fe2d945CAS | 21817016PubMed |

Heard, E., and Martienssen, R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109.
Transgenerational epigenetic inheritance: myths and mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVCnurs%3D&md5=ffd16b1447a6e489010f6f1764dc3601CAS | 24679529PubMed |

Hebenstreit, D., Fang, M., Gu, M., Charoensawan, V., van Oudenaarden, A., and Teichmann, S. A. (2011). RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol. Syst. Biol. 7, 497.
RNA sequencing reveals two major classes of gene expression levels in metazoan cells.Crossref | GoogleScholarGoogle Scholar | 21654674PubMed |

Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., Slagboom, P. E., and Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17 046–17 049.
Persistent epigenetic differences associated with prenatal exposure to famine in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlKqt7%2FP&md5=26954ffd3903905b93c8cb7597563f61CAS |

Hendrich, B., Guy, J., Ramsahoye, B., Wilson, V. A., and Bird, A. (2001). Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723.
Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisFSku74%3D&md5=7100da364bf5d35ee0f4488602eaf1e3CAS | 11274056PubMed |

Herrmann, B. G., Koschorz, B., Wertz, K., McLaughlin, K. J., and Kispert, A. (1999). A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402, 141–146.
A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVeksr8%3D&md5=dc4442d34b2f391b0449873e00ee4b61CAS | 10647005PubMed |

Hiura, H., Obata, Y., Komiyama, J., Shirai, M., and Kono, T. (2006). Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11, 353–361.
Oocyte growth-dependent progression of maternal imprinting in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Gktr8%3D&md5=c5d98f2b0e3fa11c4bcea6092983f0f1CAS | 16611239PubMed |

Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., and Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13, 86.
DNA methylation arrays as surrogate measures of cell mixture distribution.Crossref | GoogleScholarGoogle Scholar | 22568884PubMed |

Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., and Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE 2, e1289.
Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm.Crossref | GoogleScholarGoogle Scholar | 18074014PubMed |

Hurst, L. D., and McVean, G. T. (1997). Growth effects of uniparental disomies and the conflict theory of genomic imprinting. Trends Genet. 13, 436–443.
Growth effects of uniparental disomies and the conflict theory of genomic imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVamtr0%3D&md5=c8d3d051484dc4dab18172efe5a3142aCAS | 9385840PubMed |

Inoue, A., and Zhang, Y. (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194.
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksbbN&md5=dfd62e7a9660c4b823797bac2132c3e4CAS | 21940858PubMed |

Inoue, A., Ogushi, S., Saitou, M., Suzuki, M. G., and Aoki, F. (2011a). Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization. Biol. Reprod. 85, 70–77.
Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls78%3D&md5=bab515dde3b8e121c55b60cff8d0c444CAS | 21415138PubMed |

Inoue, A., Shen, L., Dai, Q., He, C., and Zhang, Y. (2011b). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21, 1670–1676.
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKms7nK&md5=007b2da7dfe182ab00cf741397e7c301CAS | 22124233PubMed |

Iqbal, K., Jin, S. G., Pfeifer, G. P., and Szabo, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=e5f377b120f2d0f9aeeb63c0541538f0CAS | 21321204PubMed |

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nN&md5=965a1850869c86e16f5c4cbf2601a80dCAS | 21778364PubMed |

Ivanova, E., Chen, J. H., Segonds-Pichon, A., Ozanne, S. E., and Kelsey, G. (2012). DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition. Epigenetics 7, 1200–1210.
DNA methylation at differentially methylated regions of imprinted genes is resistant to developmental programming by maternal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislSmu7w%3D&md5=1833929d001d1f3aaf7451127a1ff753CAS | 22968513PubMed |

Iwasa, Y. (1998). The conflict theory of genomic imprinting: how much can be explained? Curr. Top. Dev. Biol. 40, 255–293.
The conflict theory of genomic imprinting: how much can be explained?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFKltw%3D%3D&md5=42141c42fcaabbd2b8221bdaa782ae9fCAS | 9673853PubMed |

Jacobsen, S. E., and Meyerowitz, E. M. (1997). Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103.
Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFSgtrk%3D&md5=ffb265d4ac1a91f737a404971dc3c648CAS | 9262479PubMed |

Jaffe, A. E., and Irizarry, R. A. (2014). Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 15, R31.
Accounting for cellular heterogeneity is critical in epigenome-wide association studies.Crossref | GoogleScholarGoogle Scholar | 24495553PubMed |

James, W. H. (1996). Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels at the time of conception. J. Theor. Biol. 180, 271–286.
Evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels at the time of conception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltFOisrw%3D&md5=f7c7567011b7b50272954eca373be570CAS | 8776463PubMed |

James, W. H. (2004). Further evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception. Hum. Reprod. 19, 1250–1256.
Further evidence that mammalian sex ratios at birth are partially controlled by parental hormone levels around the time of conception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVahurY%3D&md5=2df9a931d3c9742f0f55c1fb251f59beCAS | 15105404PubMed |

Jin, S. G., Guo, C., and Pfeifer, G. P. (2008). GADD45A does not promote DNA demethylation. PLoS Genet. 4, e1000013.
GADD45A does not promote DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 18369439PubMed |

Jung, D., Giallourakis, C., Mostoslavsky, R., and Alt, F. W. (2006). Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24, 541–570.
Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFSqtLg%3D&md5=74dbf2c53301f523c2e0ad2ab243c974CAS | 16551259PubMed |

Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., and Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903.
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKltL8%3D&md5=8d03a16d11df43bc30fe4874d1fcc36fCAS | 15215868PubMed |

Kangaspeska, S., Stride, B., Metivier, R., Polycarpou-Schwarz, M., Ibberson, D., Carmouche, R. P., Benes, V., Gannon, F., and Reid, G. (2008). Transient cyclical methylation of promoter DNA. Nature 452, 112–115.
Transient cyclical methylation of promoter DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFynuro%3D&md5=c0c00976877dc971d7f968d88ae095aaCAS | 18322535PubMed |

Kawahara, M., Wu, Q., Takahashi, N., Morita, S., Yamada, K., Ito, M., Ferguson-Smith, A. C., and Kono, T. (2007). High-frequency generation of viable mice from engineered bi-maternal embryos. Nat. Biotechnol. 25, 1045–1050.
High-frequency generation of viable mice from engineered bi-maternal embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWksLjN&md5=842ae53567cdca9f31a611c6d1f9b221CAS | 17704765PubMed |

Kawane, K., Fukuyama, H., Kondoh, G., Takeda, J., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (2001). Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549.
Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVyqsrY%3D&md5=da1fdf78bc9496ea568b4d8786e64d52CAS | 11375492PubMed |

Keniry, A., Oxley, D., Monnier, P., Kyba, M., Dandolo, L., Smits, G., and Reik, W. (2012). The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665.
The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCltLk%3D&md5=5a6e33a8c2d24a6098892d99aa301743CAS | 22684254PubMed |

Kobayashi, H., Sato, A., Otsu, E., Hiura, H., Tomatsu, C., Utsunomiya, T., Sasaki, H., Yaegashi, N., and Arima, T. (2007). Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet. 16, 2542–2551.
Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2mtLnO&md5=ea2021270016296c7f479fea0cd6c2aaCAS | 17636251PubMed |

Kohli, R. M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479.
TET enzymes, TDG and the dynamics of DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrurzF&md5=f6c2753a25efae048ba1d29e89c32705CAS | 24153300PubMed |

Konev, A. Y., Tribus, M., Park, S. Y., Podhraski, V., Lim, C. Y., Emelyanov, A. V., Vershilova, E., Pirrotta, V., Kadonaga, J. T., Lusser, A., and Fyodorov, D. V. (2007). CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317, 1087–1090.
CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlSks7c%3D&md5=a6b94ba9e2066b86bb8493dac0beb2d7CAS | 17717186PubMed |

Kota, S. K., and Feil, R. (2010). Epigenetic transitions in germ cell development and meiosis. Dev. Cell 19, 675–686.
Epigenetic transitions in germ cell development and meiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsValsLjF&md5=1683ab9f546bbf95a08bb591bde21b72CAS | 21074718PubMed |

Kucharski, R., Maleszka, J., Foret, S., and Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830.
Nutritional control of reproductive status in honeybees via DNA methylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs12ksbc%3D&md5=aa7e5c41df89baf9519fdd3c57c56cf6CAS | 18339900PubMed |

Kumar, G., Patel, D., and Naz, R. K. (1993). c-MYC mRNA is present in human sperm cells. Cell. Mol. Biol. Res. 39, 111–117.
| 1:CAS:528:DyaK3sXmt1antr0%3D&md5=81ccc0468769abc592417f0b1470a733CAS | 8220581PubMed |

Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T. W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., Lin, H., Matsuda, Y., and Nakano, T. (2004). Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839–849.
Mili, a mammalian member of piwi family gene, is essential for spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVGiu78%3D&md5=043409566133bd2aec6f3079307ae86dCAS | 14736746PubMed |

Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T. W., Hata, K., Li, E., Matsuda, Y., Kimura, T., Okabe, M., Sakaki, Y., Sasaki, H., and Nakano, T. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917.
DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVGktL8%3D&md5=0ea19b0e220c1a12239e64ef5871fecbCAS | 18381894PubMed |

Lai, E. C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364.
Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xisl2lsL8%3D&md5=ee71c1a12c531b7147f926b6f4d7e898CAS | 11896390PubMed |

Laiho, A., Kotaja, N., Gyenesei, A., and Sironen, A. (2013). Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS ONE 8, e61558.
Transcriptome profiling of the murine testis during the first wave of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvVGjtL8%3D&md5=521aad9a977d1e8e80a777046abf6c95CAS | 23613874PubMed |

Lambrot, R., Xu, C., Saint-Phar, S., Chountalos, G., Cohen, T., Paquet, M., Suderman, M., Hallett, M., and Kimmins, S. (2013). Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat. Commun. 4, 2889.
Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c3lsVymsg%3D%3D&md5=f8300335bea4b2f0a807dfb8b55e4fdbCAS | 24326934PubMed |

Landman, O. E. (1991). The inheritance of acquired characteristics. Annu. Rev. Genet. 25, 1–20.
The inheritance of acquired characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitV2kt7s%3D&md5=c85ccc9c8c8d16ba1dc620cbd112869dCAS | 1812803PubMed |

Lane, N., Dean, W., Erhardt, S., Hajkova, P., Surani, A., Walter, J., and Reik, W. (2003). Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93.
Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt12rtb4%3D&md5=3994e21f9133fe73b9a8413180a82083CAS | 12533790PubMed |

Lees-Murdock, D. J., and Walsh, C. P. (2008). DNA methylation reprogramming in the germ line. Epigenetics 3, 5–13.
DNA methylation reprogramming in the germ line.Crossref | GoogleScholarGoogle Scholar | 18259118PubMed |

Ley, T. J., Ding, L., Walter, M. J., McLellan, M. D., Lamprecht, T., Larson, D. E., Kandoth, C., Payton, J. E., Baty, J., Welch, J., Harris, C. C., Lichti, C. F., Townsend, R. R., Fulton, R. S., Dooling, D. J., Koboldt, D. C., Schmidt, H., Zhang, Q., Osborne, J. R., Lin, L., O’Laughlin, M., McMichael, J. F., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Magrini, V. J., Vickery, T. L., Hundal, J., Cook, L. L., Conyers, J. J., Swift, G. W., Reed, J. P., Alldredge, P. A., Wylie, T., Walker, J., Kalicki, J., Watson, M. A., Heath, S., Shannon, W. D., Varghese, N., Nagarajan, R., Westervelt, P., Tomasson, M. H., Link, D. C., Graubert, T. A., DiPersio, J. F., Mardis, E. R., and Wilson, R. K. (2010). DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433.
DNMT3A mutations in acute myeloid leukemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2ltb7K&md5=d064dd3899fdc24f5020985b01062fe3CAS | 21067377PubMed |

Li, Y., and O’Neill, C. (2012). Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE 7, e30687.
Persistence of cytosine methylation of DNA following fertilisation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlaqsb8%3D&md5=86e625c4ffb854e8dd144b981bb46242CAS | 22292019PubMed |

Li, E., Bestor, T. H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVGgsr0%3D&md5=661468f90bba5fd1a3571e16e6931cdbCAS | 1606615PubMed |

Li, J. Y., Lees-Murdock, D. J., Xu, G. L., and Walsh, C. P. (2004). Timing of establishment of paternal methylation imprints in the mouse. Genomics 84, 952–960.
Timing of establishment of paternal methylation imprints in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlyktrs%3D&md5=9433ef5416bad9a3e904c6dda650c0ddCAS | 15533712PubMed |

Li, B., Li, J. B., Xiao, X. F., Ma, Y. F., Wang, J., Liang, X. X., Zhao, H. X., Jiang, F., Yao, Y. Q., and Wang, X. H. (2013). Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm. PLoS ONE 8, e71215.
Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVagt7bJ&md5=5a5f5e8975ce3dc5ea81d52a32779fcfCAS | 24015185PubMed |

Lin, S. P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., and Ferguson-Smith, A. C. (2003). Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat. Genet. 35, 97–102.
Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslelsr0%3D&md5=489f330eafac84ddc8bf622113ce5175CAS | 12937418PubMed |

Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T. L., and Couble, P. (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature 437, 1386–1390.
The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrurzL&md5=5ddd8238abf59c62f8ed65202a573324CAS | 16251970PubMed |

Loukinov, D. I., Pugacheva, E., Vatolin, S., Pack, S. D., Moon, H., Chernukhin, I., Mannan, P., Larsson, E., Kanduri, C., Vostrov, A. A., Cui, H., Niemitz, E. L., Rasko, J. E., Docquier, F. M., Kistler, M., Breen, J. J., Zhuang, Z., Quitschke, W. W., Renkawitz, R., Klenova, E. M., Feinberg, A. P., Ohlsson, R., Morse, H. C., and Lobanenkov, V. V. (2002). BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc. Natl Acad. Sci. USA 99, 6806–6811.
BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFCrtLs%3D&md5=ea442d67f823c17899d2c692c5916be2CAS | 12011441PubMed |

Louro, R., Smirnova, A. S., and Verjovski-Almeida, S. (2009). Long intronic noncoding RNA transcription: expression noise or expression choice? Genomics 93, 291–298.
Long intronic noncoding RNA transcription: expression noise or expression choice?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFensr0%3D&md5=344c744989701cb0a01598e492dc0c32CAS | 19071207PubMed |

Lucifero, D., Mann, M. R., Bartolomei, M. S., and Trasler, J. M. (2004). Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849.
Gene-specific timing and epigenetic memory in oocyte imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ltro%3D&md5=b90a51f2bb2eb81753f2a9b49f4e8084CAS | 14998934PubMed |

Ma, J. Y., Liang, X. W., Schatten, H., and Sun, Q. Y. (2012). Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives. Mol. Hum. Reprod. 18, 333–340.
Active DNA demethylation in mammalian preimplantation embryos: new insights and new perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVahsbY%3D&md5=b335d96e06987959929cf1c4e150d8c3CAS | 22447119PubMed |

MacArthur, D. (2012). Methods: face up to false positives. Nature 487, 427–428.
Methods: face up to false positives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWjtLjE&md5=6bb21420fc58ca07d50fedf40c41dda1CAS | 22836983PubMed |

Maderspacher, F. (2014). Hype in halifax. Curr. Biol. 24, R298–R301.
Hype in halifax.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Grsrw%3D&md5=9edeede56a0827d891e19649b8f8e8ccCAS | 24735847PubMed |

Magee, D. A., Spillane, C., Berkowicz, E. W., Sikora, K. M., and MacHugh, D. E. (2014). Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim. Genet. 45, 25–39.
Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WmsL3I&md5=9be5a825b3d4c09a33dcf76d1b95c97bCAS | 24990393PubMed |

Manikkam, M., Guerrero-Bosagna, C., Tracey, R., Haque, M. M., and Skinner, M. K. (2012a). Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE 7, e31901.
Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1ejtrs%3D&md5=3cb33f6f4a3c702fb7bb583107eae034CAS | 22389676PubMed |

Manikkam, M., Tracey, R., Guerrero-Bosagna, C., and Skinner, M. K. (2012b). Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations. Reprod. Toxicol. 34, 708–719.
Pesticide and insect repellent mixture (permethrin and DEET) induces epigenetic transgenerational inheritance of disease and sperm epimutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKnsb%2FJ&md5=23124a78633b23f4eb36f9341f6dc10fCAS | 22975477PubMed |

Manikkam, M., Tracey, R., Guerrero-Bosagna, C., and Skinner, M. K. (2013). Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 8, e55387.
Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Cgsr8%3D&md5=343df81bd050c51e2855ea098dd64c6aCAS | 23359474PubMed |

Maric-Bilkan, C., Symonds, M., Ozanne, S., and Alexander, B. T. (2011). Impact of maternal obesity and diabetes on long-term health of the offspring. Exp. Diabetes Res. 2011, Article ID 163438.
Impact of maternal obesity and diabetes on long-term health of the offspring.Crossref | GoogleScholarGoogle Scholar |

Marinov, G. K., Williams, B. A., McCue, K., Schroth, G. P., Gertz, J., Myers, R. M., and Wold, B. J. (2014). From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkvVyqsLs%3D&md5=d7e7c2ec5c6bcbd8f13efbdb500c1599CAS | 24299736PubMed |

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–502.
Demethylation of the zygotic paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShsbY%3D&md5=198292bceaebe4c2b12100b3179ed79bCAS | 10676950PubMed |

Meister, G. (2007). miRNAs get an early start on translational silencing. Cell 131, 25–28.
miRNAs get an early start on translational silencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CntLjL&md5=557c4f8c0bc34c1dc1bd183577fa717fCAS | 17923084PubMed |

Meister, G., and Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349.
Mechanisms of gene silencing by double-stranded RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsFaiu7Y%3D&md5=2964eeb6449d03d172c44ef1feb84fc8CAS | 15372041PubMed |

Meistrich, M. L., Mohapatra, B., Shirley, C. R., and Zhao, M. (2003). Roles of transition nuclear proteins in spermiogenesis. Chromosoma 111, 483–488.
Roles of transition nuclear proteins in spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 12743712PubMed |

Mercer, T. R., and Mattick, J. S. (2013). Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20, 300–307.
Structure and function of long noncoding RNAs in epigenetic regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFOhu74%3D&md5=72be54a3e89051b46cce7e47628821a6CAS | 23463315PubMed |

Messerschmidt, D. M., Knowles, B. B., and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828.
DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVamuro%3D&md5=225d6e3769039d0a31ee69d454860f58CAS | 24736841PubMed |

Métivier, R., Gallais, R., Tiffoche, C., Le Péron, C., Jurkowska, R. Z., Carmouche, R. P., Ibberson, D., Barath, P., Demay, F., Reid, G., Benes, V., Jeltsch, A., Gannon, F., and Salbert, G. (2008). Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50.
Cyclical DNA methylation of a transcriptionally active promoter.Crossref | GoogleScholarGoogle Scholar | 18322525PubMed |

Michels, K. B., Binder, A. M., Dedeurwaerder, S., Epstein, C. B., Greally, J. M., Gut, I., Houseman, E. A., Izzi, B., Kelsey, K. T., Meissner, A., Milosavljevic, A., Siegmund, K. D., Bock, C., and Irizarry, R. A. (2013). Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955.
Recommendations for the design and analysis of epigenome-wide association studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFaks7rN&md5=98c21ce3f93f10d991f12691815ad112CAS | 24076989PubMed |

Miller, D., Brinkworth, M., and Iles, D. (2010). Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139, 287–301.
Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitFKit70%3D&md5=6ca48c2fafbc6c4f756e66a90f9ce347CAS | 19759174PubMed |

Molaro, A., Falciatori, I., Hodges, E., Aravin, A. A., Marran, K., Rafii, S., McCombie, W. R., Smith, A. D., and Hannon, G. J. (2014). Two waves of de novo methylation during mouse germ cell development. Genes Dev. 28, 1544–1549.
Two waves of de novo methylation during mouse germ cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Krt73K&md5=90f2c628fa22bde08b17b5e096ad07d6CAS | 25030694PubMed |

Monnier, P., Martinet, C., Pontis, J., Stancheva, I., Ait-Si-Ali, S., and Dandolo, L. (2013). H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc. Natl Acad. Sci. USA 110, 20 693–20 698.
H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnsVygsg%3D%3D&md5=ca4261af082f23e1f31db50cd54ef075CAS |

Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.
Epigenetic inheritance at the agouti locus in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Gns7w%3D&md5=3893908da8355f796454a14a3bcc5b30CAS | 10545949PubMed |

Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. Hum. Mol. Genet. 14, R47–R58.
Epigenetic reprogramming in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFeksb4%3D&md5=7bf0ae44b3c98b5ef5fdee06d48d7581CAS | 15809273PubMed |

Mukherjee, A., Koli, S., and Reddy, K. V. (2014). Regulatory non-coding transcripts in spermatogenesis: shedding light on ‘dark matter’. Andrology 2, 360–369.
Regulatory non-coding transcripts in spermatogenesis: shedding light on ‘dark matter’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvF2ks74%3D&md5=d70694fb7d2665e78ca0176d5ad2fe6eCAS | 24519965PubMed |

Murchison, E. P., and Hannon, G. J. (2004). miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr. Opin. Cell Biol. 16, 223–229.
miRNAs on the move: miRNA biogenesis and the RNAi machinery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCqsLc%3D&md5=2409dcaa038dbeec39bbf8474eda4baaCAS | 15145345PubMed |

Mychasiuk, R., Zahir, S., Schmold, N., Ilnytskyy, S., Kovalchuk, O., and Gibb, R. (2012). Parental enrichment and offspring development: modifications to brain, behavior and the epigenome. Behav. Brain Res. 228, 294–298.
Parental enrichment and offspring development: modifications to brain, behavior and the epigenome.Crossref | GoogleScholarGoogle Scholar | 22173001PubMed |

Mychasiuk, R., Harker, A., Ilnytskyy, S., and Gibb, R. (2013). Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring. Neuroscience 241, 100–105.
Paternal stress prior to conception alters DNA methylation and behaviour of developing rat offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2gsLo%3D&md5=ba83eb302731b3c44771055bf40a9832CAS | 23531434PubMed |

Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M., Tanaka, S., Shiota, K., and Nakano, T. (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64–71.
PGC7/Stella protects against DNA demethylation in early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2l&md5=d1b1f0f6b21da3f33da1a6e5028e65f7CAS | 17143267PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=ce2edc64fc1186097910bd476aae14bbCAS | 22722204PubMed |

Navarro-Martín, L., Viñas, J., Ribas, L., Díaz, N., Gutiérrez, A., Di Croce, L., and Piferrer, F. (2011). DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 7, e1002447.
DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass.Crossref | GoogleScholarGoogle Scholar | 22242011PubMed |

Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J. C., Grutzner, F., and Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640.
The evolution of lncRNA repertoires and expression patterns in tetrapods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFemtLg%3D&md5=93d5b5cccc0a7a32d1f90b57a440241bCAS | 24463510PubMed |

O’Doherty, A. M., O’Shea, L. C., and Fair, T. (2012). Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins. Biol. Reprod. 86, 67.
Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins.Crossref | GoogleScholarGoogle Scholar | 22088914PubMed |

O’Doherty, A. M., O’Gorman, A., Al Naib, A., Brennan, L., Daly, E., Duffy, P., and Fair, T. (2014). Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows. Genomics , .
Negative energy balance affects imprint stability in oocytes recovered from postpartum dairy cows.Crossref | GoogleScholarGoogle Scholar | 25084396PubMed |

Okano, M., Bell, D. W., Haber, D. A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnt1Gqsrc%3D&md5=fdaea9eda23862054886b06f0941ab45CAS | 10555141PubMed |

Okuwaki, M., Sumi, A., Hisaoka, M., Saotome-Nakamura, A., Akashi, S., Nishimura, Y., and Nagata, K. (2012). Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res. 40, 4861–4878.
Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCnt7g%3D&md5=50db9b7da919156dabade6b62a05be04CAS | 22362753PubMed |

Ooi, S. K., and Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell 133, 1145–1148.
The colorful history of active DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFWku7o%3D&md5=46f51eac1fdef27d17465b9b160fb33fCAS | 18585349PubMed |

Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P., and Krawetz, S. A. (2004). Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429, 154.
Reproductive biology: delivering spermatozoan RNA to the oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKgs7k%3D&md5=bf68b0e538b20dcd5f97583464882874CAS | 15141202PubMed |

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478.
Active demethylation of the paternal genome in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislyltLo%3D&md5=8a201a26d28edd169ddf9d51acc0d589CAS | 10801417PubMed |

Pembrey, M. E. (2010). Male-line transgenerational responses in humans. Hum. Fertil. (Camb.) 13, 268–271.
Male-line transgenerational responses in humans.Crossref | GoogleScholarGoogle Scholar | 21117937PubMed |

Pessot, C. A., Brito, M., Figueroa, J., Concha, I. I., Yanez, A., and Burzio, L. O. (1989). Presence of RNA in the sperm nucleus. Biochem. Biophys. Res. Commun. 158, 272–278.
Presence of RNA in the sperm nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFaiurs%3D&md5=fd4886539493004c415f1cd799f3f285CAS | 2463835PubMed |

Pivot-Pajot, C., Caron, C., Govin, J., Vion, A., Rousseaux, S., and Khochbin, S. (2003). Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol. Cell. Biol. 23, 5354–5365.
Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGmsrY%3D&md5=e402ccc8e47c121d8a8480c433420befCAS | 12861021PubMed |

Ponjavic, J., Ponting, C. P., and Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17, 556–565.
Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltF2isbc%3D&md5=b92f6e6a9c98b86b24b5838ed65ad9c6CAS | 17387145PubMed |

Proudhon, C., Duffie, R., Ajjan, S., Cowley, M., Iranzo, J., Carbajosa, G., Saadeh, H., Holland, M. L., Oakey, R. J., Rakyan, V. K., Schulz, R., and Bourc’his, D. (2012). Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47, 909–920.
Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aktbvJ&md5=a67da65b6aefb8719aff4910818b101fCAS | 22902559PubMed |

Ptashne, M. (2013). Epigenetics: core misconcept. Proc. Natl Acad. Sci. USA 110, 7101–7103.
Epigenetics: core misconcept.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos1Ojsr8%3D&md5=87306b34fd4f8bf7a2c3924562e9c8ebCAS | 23584020PubMed |

Radford, E. J., Ito, M., Shi, H., Corish, J. A., Yamazawa, K., Isganaitis, E., Seisenberger, S., Hore, T. A., Reik, W., Erkek, S., Peters, A. H., Patti, M. E., and Ferguson-Smith, A. C. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science , .
In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism.Crossref | GoogleScholarGoogle Scholar | 25011554PubMed |

Rahman, M. B., Kamal, M. M., Rijsselaere, T., Vandaele, L., Shamsuddin, M., and Van Soom, A. (2013). Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle. Reprod. Fertil. Dev , .
Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle.Crossref | GoogleScholarGoogle Scholar |

Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I., and Whitelaw, E. (2002). Metastable epialleles in mammals. Trends Genet. 18, 348–351.
Metastable epialleles in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVOlsrs%3D&md5=dca0298c87d1e49653dcbcf894bf844eCAS | 12127774PubMed |

Rapicavoli, N. A., Poth, E. M., Zhu, H., and Blackshaw, S. (2011). The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev. 6, 32.
The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSgs7bI&md5=aa983b55b663e4fbbda9eee9008f21fbCAS | 21936910PubMed |

Rassoulzadegan, M., Grandjean, V., Gounon, P., Vincent, S., Gillot, I., and Cuzin, F. (2006). RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441, 469–474.
RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVykurk%3D&md5=0805d8cc9f84252c26d271133cd8d531CAS | 16724059PubMed |

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.
Epigenetic reprogramming in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWltL8%3D&md5=515f471e9704a69bd6eb622cea4426eeCAS | 11498579PubMed |

Reinders, J., Wulff, B. B., Mirouze, M., Mari-Ordonez, A., Dapp, M., Rozhon, W., Bucher, E., Theiler, G., and Paszkowski, J. (2009). Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950.
Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslSgtbg%3D&md5=df2454059d12436a15ff17105a4a1cf3CAS | 19390088PubMed |

Romero, Y., Meikar, O., Papaioannou, M. D., Conne, B., Grey, C., Weier, M., Pralong, F., De Massy, B., Kaessmann, H., Vassalli, J. D., Kotaja, N., and Nef, S. (2011). Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects. PLoS ONE 6, e25241.
Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOitLrO&md5=bf26dfec4badd3a100aa5ee9f457f47bCAS | 21998645PubMed |

Santoro, F., Mayer, D., Klement, R. M., Warczok, K. E., Stukalov, A., Barlow, D. P., and Pauler, F. M. (2013). Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window. Development 140, 1184–1195.
Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCrsbo%3D&md5=ff00ee996ea139801f4dc1e3beae6ac9CAS | 23444351PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=279ad82074a29de555d74c8e5daaf379CAS | 11784103PubMed |

Schmitz, K. M., Schmitt, N., Hoffmann-Rohrer, U., Schafer, A., Grummt, I., and Mayer, C. (2009). TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation. Mol. Cell 33, 344–353.
TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFSnur4%3D&md5=f7be41e55a230e95d031bb6828fa20e3CAS | 19217408PubMed |

Schulz, R., Proudhon, C., Bestor, T. H., Woodfine, K., Lin, C. S., Lin, S. P., Prissette, M., Oakey, R. J., and Bourc’his, D. (2010). The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet. 6, e1001214.
The parental non-equivalence of imprinting control regions during mammalian development and evolution.Crossref | GoogleScholarGoogle Scholar | 21124941PubMed |

Seisenberger, S., Andrews, S., Krueger, F., Arand, J., Walter, J., Santos, F., Popp, C., Thienpont, B., Dean, W., and Reik, W. (2012). The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862.
The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVWju77J&md5=67de39e85f24d855cbe91fe81c615791CAS | 23219530PubMed |

Seisenberger, S., Peat, J. R., Hore, T. A., Santos, F., Dean, W., and Reik, W. (2013). Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110330.
Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.Crossref | GoogleScholarGoogle Scholar | 23166394PubMed |

Sendler, E., Johnson, G. D., Mao, S., Goodrich, R. J., Diamond, M. P., Hauser, R., and Krawetz, S. A. (2013). Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 41, 4104–4117.
Stability, delivery and functions of human sperm RNAs at fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKitr8%3D&md5=4a50c395883691669acacfc18b3c021fCAS | 23471003PubMed |

Shi, W., Dirim, F., Wolf, E., Zakhartchenko, V., and Haaf, T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod. 71, 340–347.
Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKrsr4%3D&md5=3952a747e7f4d87b6b66678f33da4807CAS | 15028628PubMed |

Shibata, H., Yoda, Y., Kato, R., Ueda, T., Kamiya, M., Hiraiwa, N., Yoshiki, A., Plass, C., Pearsall, R. S., Held, W. A., Muramatsu, M., Sasaki, H., Kusakabe, M., and Hayashizaki, Y. (1998). A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with the U2afbp-rs gene: an association with a short tandem repeat and a hypermethylated region. Genomics 49, 30–37.
A methylation imprint mark in the mouse imprinted gene Grf1/Cdc25Mm locus shares a common feature with the U2afbp-rs gene: an association with a short tandem repeat and a hypermethylated region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFSiu70%3D&md5=de58a1fc1bd6a0fa218a82b3ea8118b6CAS | 9570946PubMed |

Shirane, K., Toh, H., Kobayashi, H., Miura, F., Chiba, H., Ito, T., Kono, T., and Sasaki, H. (2013). Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet. 9, e1003439.
Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ejurw%3D&md5=faf5cb1f1ac8f270e474a3836f72103fCAS | 23637617PubMed |

Singh, S., and Li, S. S. (2012). Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int. J. Mol. Sci. 13, 10 143–10 153.
Epigenetic effects of environmental chemicals bisphenol A and phthalates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1KhsbzP&md5=95b3dd23950b26d169435e901d5b64c2CAS |

Skinner, M. K., and Anway, M. D. (2005). Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors. Ann. N. Y. Acad. Sci. 1061, 18–32.
Seminiferous cord formation and germ-cell programming: epigenetic transgenerational actions of endocrine disruptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVamurk%3D&md5=203d0e7a73f1c8d108e732cc70dac155CAS | 16467254PubMed |

Skinner, M. K., Haque, C. G., Nilsson, E., Bhandari, R., and McCarrey, J. R. (2013). Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS ONE 8, e66318.
Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Shu7bM&md5=496eaa62947a6ac29847cdc23b65f043CAS | 23869203PubMed |

Smallwood, S. A., and Kelsey, G. (2012). De novo DNA methylation: a germ cell perspective. Trends Genet. 28, 33–42.
De novo DNA methylation: a germ cell perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2msA%3D%3D&md5=59b2320358c7461b37d6dfe1ccdca8c8CAS | 22019337PubMed |

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.
A unique regulatory phase of DNA methylation in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yrsbw%3D&md5=de248ce4dfeac66796f9c788a937d7f7CAS | 22456710PubMed |

Smits, G., Mungall, A. J., Griffiths-Jones, S., Smith, P., Beury, D., Matthews, L., Rogers, J., Pask, A. J., Shaw, G., VandeBerg, J. L., McCarrey, J. R., Consortium, S., Renfree, M. B., Reik, W., and Dunham, I. (2008). Conservation of the H19 noncoding RNA and H19–IGF2 imprinting mechanism in therians. Nat. Genet. 40, 971–976.
Conservation of the H19 noncoding RNA and H19–IGF2 imprinting mechanism in therians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVKku7s%3D&md5=0fc9d302b89512fec60d77e239350ad5CAS | 18587395PubMed |

Soon, L. L., Ausio, J., Breed, W. G., Power, J. H., and Muller, S. (1997). Isolation of histones and related chromatin structures from spermatozoa nuclei of a dasyurid marsupial, Sminthopsis crassicaudata. J. Exp. Zool. 278, 322–332.
Isolation of histones and related chromatin structures from spermatozoa nuclei of a dasyurid marsupial, Sminthopsis crassicaudata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvVCqsL4%3D&md5=a9f26b32a3c82e3a67ced05295321bcdCAS | 9216075PubMed |

Soubry, A., Hoyo, C., Jirtle, R. L., and Murphy, S. K. (2014). A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. Bioessays 36, 359–371.
A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktV2iu74%3D&md5=f311e2e514363805dfec55815d0be85bCAS | 24431278PubMed |

Spehr, M., Schwane, K., Riffell, J. A., Zimmer, R. K., and Hatt, H. (2006). Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol. Cell. Endocrinol. 250, 128–136.
Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjsLY%3D&md5=abb29d5d80fa20482a438ca283935b2bCAS | 16413109PubMed |

Stothard, K. J., Tennant, P. W., Bell, R., and Rankin, J. (2009). Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301, 636–650.
Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVyjt70%3D&md5=e5d4083aa663fb339c76cbaf1effc99cCAS | 19211471PubMed |

Struhl, K. (2014). Is DNA methylation of tumour suppressor genes epigenetic? eLIFE 3, e02475.
Is DNA methylation of tumour suppressor genes epigenetic?Crossref | GoogleScholarGoogle Scholar | 24623307PubMed |

Sun, J., Lin, Y., and Wu, J. (2013). Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS ONE 8, e75750.
Long non-coding RNA expression profiling of mouse testis during postnatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1egs7fI&md5=5cc7f32d4ea696034ab1b72af0a0ccd4CAS | 24130740PubMed |

Szyf, M. (2014). Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning. Nat. Neurosci. 17, 2–4.
Lamarck revisited: epigenetic inheritance of ancestral odor fear conditioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFylu7jK&md5=60914982fa6df2684d0cdb9ebf9c272fCAS | 24369368PubMed |

Takada, S., Paulsen, M., Tevendale, M., Tsai, C. E., Kelsey, G., Cattanach, B. M., and Ferguson-Smith, A. C. (2002). Epigenetic analysis of the Dlk1–Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2–H19. Hum. Mol. Genet. 11, 77–86.
Epigenetic analysis of the Dlk1–Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2–H19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFCktg%3D%3D&md5=2a060c463fd560b12abcb8020dd7ffe2CAS | 11773001PubMed |

Tatton-Brown, K., Seal, S., Ruark, E., Harmer, J., Ramsay, E., Del Vecchio Duarte, S., Zachariou, A., Hanks, S., O’Brien, E., Aksglaede, L., Baralle, D., Dabir, T., Gener, B., Goudie, D., Homfray, T., Kumar, A., Pilz, D. T., Selicorni, A., Temple, I. K., Van Maldergem, L., Yachelevich, N., Childhood Overgrowth, C., van Montfort, R., and Rahman, N. (2014). Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46, 385–388.
Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlGitLc%3D&md5=ba9937d18a2c212bb5a9caf1e81961a2CAS | 24614070PubMed |

Trasler, J. M. (2006). Gamete imprinting: setting epigenetic patterns for the next generation. Reprod. Fertil. Dev. 18, 63–69.
Gamete imprinting: setting epigenetic patterns for the next generation.Crossref | GoogleScholarGoogle Scholar | 16478603PubMed |

Tremblay, K. D., Duran, K. L., and Bartolomei, M. S. (1997). A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17, 4322–4329.
| 1:CAS:528:DyaK2sXkvVertLs%3D&md5=66cd0548b790f2ddc08704b42c733eefCAS | 9234689PubMed |

Vasudevan, S., Tong, Y., and Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934.
Switching from repression to activation: microRNAs can up-regulate translation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGjsLbK&md5=5333607168bd694e183915392250c7e2CAS | 18048652PubMed |

Waddington, C. (1942). The epigenotype. Endeavour 1, 18–20.

Wang, J., Fan, H. C., Behr, B., and Quake, S. R. (2012). Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412.
Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymtr7P&md5=8c9680b6a1cfe12bdd3b3f2af9f136b2CAS | 22817899PubMed |

Wang, X., Miller, D. C., Harman, R., Antczak, D. F., and Clark, A. G. (2013). Paternally expressed genes predominate in the placenta. Proc. Natl Acad. Sci. USA 110, 10 705–10 710.
Paternally expressed genes predominate in the placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejs7vI&md5=d804b3091e873dd57256a3b464ed3507CAS |

Ward, W. S., and Coffey, D. S. (1991). DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol. Reprod. 44, 569–574.
DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhvVamt7c%3D&md5=e25eab463f0816fca837252a87b0d247CAS | 2043729PubMed |

Watanabe, T., Tomizawa, S., Mitsuya, K., Totoki, Y., Yamamoto, Y., Kuramochi-Miyagawa, S., Iida, N., Hoki, Y., Murphy, P. J., Toyoda, A., Gotoh, K., Hiura, H., Arima, T., Fujiyama, A., Sado, T., Shibata, T., Nakano, T., Lin, H., Ichiyanagi, K., Soloway, P. D., and Sasaki, H. (2011). Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332, 848–852.
Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsL4%3D&md5=4e39dc54394cf5ef60577a734bdb9febCAS | 21566194PubMed |

Waterland, R. A., Kellermayer, R., Laritsky, E., Rayco-Solon, P., Harris, R. A., Travisano, M., Zhang, W., Torskaya, M. S., Zhang, J., Shen, L., Manary, M. J., and Prentice, A. M. (2010). Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252.
Season of conception in rural Gambia affects DNA methylation at putative human metastable epialleles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtlWntg%3D%3D&md5=2ef7e69d223e470fee344480da91fd1fCAS | 21203497PubMed |

Webster, K. E., O’Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., Harrison, D. K., Aung, H., Phutikanit, N., Lyle, R., Meachem, S. J., Antonarakis, S. E., de Kretser, D. M., Hedger, M. P., Peterson, P., Carroll, B. J., and Scott, H. S. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc. Natl Acad. Sci. USA 102, 4068–4073.
Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12jtr8%3D&md5=11f8fdd024c184ff6ac76080ab4b4c19CAS | 15753313PubMed |

Willingham, A. T., Orth, A. P., Batalov, S., Peters, E. C., Wen, B. G., Aza-Blanc, P., Hogenesch, J. B., and Schultz, P. G. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573.
A strategy for probing the function of noncoding RNAs finds a repressor of NFAT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWju7s%3D&md5=fd6d7dfe3efa0015dc755bf04651ebe3CAS | 16141075PubMed |

Wolff, H. (1995). The biologic significance of white blood cells in semen. Fertil. Steril. 63, 1143–1157.
| 1:STN:280:DyaK2M3mvFyisw%3D%3D&md5=d107d26a45fc948bae61e65b5be9f6fcCAS | 7750580PubMed |

Wolff, G. L., Kodell, R. L., Moore, S. R., and Cooney, C. A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957.
| 1:CAS:528:DyaK1cXlt1Chsrs%3D&md5=690f747114025840c3009189016cc009CAS | 9707167PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |

Wu, H., and Zhang, Y. (2014). Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68.
Reversing DNA methylation: mechanisms, genomics, and biological functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtF2itLg%3D&md5=4a4d0fd52cad70f71ed15c02bc4155b8CAS | 24439369PubMed |

Wu, Q., Song, R., Ortogero, N., Zheng, H., Evanoff, R., Small, C. L., Griswold, M. D., Namekawa, S. H., Royo, H., Turner, J. M., and Yan, W. (2012). The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J. Biol. Chem. 287, 25 173–25 190.
The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGnt7vK&md5=06300423db1504997bd5206e2cb3d04bCAS |

Wykes, S. M., Miller, D., and Krawetz, S. A. (2000). Mammalian spermatozoal mRNAs: tools for the functional analysis of male gametes. J. Submicrosc. Cytol. Pathol. 32, 77–81.
| 1:STN:280:DC%2BD3cvptlOkug%3D%3D&md5=a27a88e64e19e0a91ef8bd20afe7636bCAS | 10877105PubMed |

Yan, X. J., Xu, J., Gu, Z. H., Pan, C. M., Lu, G., Shen, Y., Shi, J. Y., Zhu, Y. M., Tang, L., Zhang, X. W., Liang, W. X., Mi, J. Q., Song, H. D., Li, K. Q., Chen, Z., and Chen, S. J. (2011). Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat. Genet. 43, 309–315.
Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVGms7w%3D&md5=4cec9be38787d19ecc2ab9303069b8c5CAS | 21399634PubMed |

Yang, J. S., and Lai, E. C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903.
Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFymsLjO&md5=ca90fde06069d9e59de0650f04bfdf24CAS | 21925378PubMed |

Yoon, B. J., Herman, H., Sikora, A., Smith, L. T., Plass, C., and Soloway, P. D. (2002). Regulation of DNA methylation of Rasgrf1. Nat. Genet. 30, 92–96.
Regulation of DNA methylation of Rasgrf1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVGjsA%3D%3D&md5=337bcaae1418164a109a4199d976c8a7CAS | 11753386PubMed |

Zalensky, A. O., Siino, J. S., Gineitis, A. A., Zalenskaya, I. A., Tomilin, N. V., Yau, P., and Bradbury, E. M. (2002). Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J. Biol. Chem. 277, 43 474–43 480.
Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1emtrw%3D&md5=b7384f123626732830310823a08fcf5eCAS |

Zeng, Y., and Cullen, B. R. (2004). Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32, 4776–4785.
Structural requirements for pre-microRNA binding and nuclear export by Exportin 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVOls7c%3D&md5=4991106f91716cb0d0f775f20b6243adCAS | 15356295PubMed |

Zhao, H., and Chen, T. (2013). Tet family of 5-methylcytosine dioxygenases in mammalian development. J. Hum. Genet. 58, 421–427.
Tet family of 5-methylcytosine dioxygenases in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyhu7vF&md5=5029a0e4c08079e7657c397a458149c1CAS | 23719188PubMed |

Zhu, J. K. (2009). Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143–166.
Active DNA demethylation mediated by DNA glycosylases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsF2qtrjF&md5=bd6776c6845492e2d4d3cf7f90941e70CAS | 19659441PubMed |