Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cloning and expression of progesterone receptor isoforms A and B in bovine corpus luteum

Robert Rekawiecki A B , Magdalena Karolina Kowalik A and Jan Kotwica A
+ Author Affiliations
- Author Affiliations

A Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.

B Corresponding author. Email: r.rekawiecki@pan.olsztyn.pl

Reproduction, Fertility and Development 27(7) 1029-1037 https://doi.org/10.1071/RD13308
Submitted: 16 September 2013  Accepted: 20 February 2014   Published: 27 March 2014

Abstract

Progesterone (P4) affects a cell through its nuclear receptor (PGR), which has two main isoforms: A (PGRA) and B (PGRB). A partial section of previously unknown PGRB cDNA from cattle was cloned. Next, mRNA and protein levels for these two isoforms in corpora lutea (CL) collected during different stages of the oestrous cycle and pregnancy were determined. The PGRB mRNA level was highest on Days 2–5 of the oestrous cycle, decreased over the next few days (P < 0.01) and increased again slightly on Days 17–20 (P < 0.05). During pregnancy, PGRB mRNA was at its lowest level during Weeks 3–5 (P < 0.01) and highest during Weeks 6–12 (P < 0.01). The profile of PGRA mRNA levels was similar to that of PGRB throughout the oestrous cycle. The PGRA protein level was highest on Days 2–10 of the oestrous cycle, decreased continuously to its lowest concentration on Days 17–20 (P < 0.01) and during Weeks 3–5 of pregnancy (P > 0.05) and increased during Weeks 6–12 (P < 0.05). PGRB protein concentration followed a similar pattern but at a markedly lower level. Both PGRA and PGRB isoforms are involved in the regulation of P4 action, especially in the newly formed CL and developed CL in the first trimester of pregnancy. These data suggest that the variable expression of these isoforms during the oestrous cycle may depend on the influence of P4.

Additional keywords: nuclear receptors, PGRA, PGRB.


References

Auletta, F. J., Kelm, L. B., and Schofield, M. J. (1995). Responsiveness of the corpus luteum of the rhesus monkey (Macaca mulatta) to gonadotrophin in vitro during spontaneous and prostaglandin F2 alpha-induced luteolysis. J. Reprod. Fertil. 103, 107–113.
Responsiveness of the corpus luteum of the rhesus monkey (Macaca mulatta) to gonadotrophin in vitro during spontaneous and prostaglandin F2 alpha-induced luteolysis.Crossref | GoogleScholarGoogle Scholar | 7707285PubMed |

Berisha, B., Pfaffl, M. W., and Schams, D. (2002). Expression of oestrogen and progesterone receptors in the bovine ovary during oestrous cycle and pregnancy. Endocrine 17, 207–214.
Expression of oestrogen and progesterone receptors in the bovine ovary during oestrous cycle and pregnancy.Crossref | GoogleScholarGoogle Scholar | 12108521PubMed |

Cassar, C. A., Dow, M. P. D., Pursley, J. R., and Smith, G. W. (2002). Effect of the preovulatory LH surge on bovine follicular progesterone receptor mRNA expression. Domest. Anim. Endocrinol. 22, 179–187.
Effect of the preovulatory LH surge on bovine follicular progesterone receptor mRNA expression.Crossref | GoogleScholarGoogle Scholar | 11934526PubMed |

Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.Crossref | GoogleScholarGoogle Scholar | 2440339PubMed |

Conneely, O. M., and Lydon, J. P. (2000). Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids 65, 571–577.
Progesterone receptors in reproduction: functional impact of the A and B isoforms.Crossref | GoogleScholarGoogle Scholar | 11108861PubMed |

Conneely, O. M., Kettelberger, D. M., Tsai, M. J., Schrader, W. T., and O’Malley, B. W. (1989). The chicken progesterone receptor A and B isoforms are products of an alternate translation initiation event. J. Biol. Chem. 264, 14062–14064.
| 2760059PubMed |

Duffy, D. M., Wells, T. R., Haluska, G. J., and Stouffer, R. L. (1997). The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle. Biol. Reprod. 57, 693–699.
The ratio of progesterone receptor isoforms changes in the monkey corpus luteum during the luteal phase of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 9314568PubMed |

Graham, J. D., Yager, M. L., Hill, H. D., Byth, K., O’Neill, G. M., and Clarke, C. L. (2005). Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol. Endocrinol. 19, 2713–2735.
Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 15976005PubMed |

Ireland, J. J., Murphee, R. L., and Coulson, P. B. (1980). Accuracy of predicting stages of bovine oestrous cycle by gross appearance of the corpus luteum. J. Dairy Sci. 63, 155–160.
Accuracy of predicting stages of bovine oestrous cycle by gross appearance of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 7372895PubMed |

Jainudeen, M. R., and Hafez, E. S. E. (1980). ‘Gestation, prenatal physiology and parturition. In ‘Reproduction in Farm Animals’. (Eds E. Hafez and E. S. E. Havez.) pp. 247–283. (Lea & Febiger: Philadelphia.)

Kotwica, J., and Williams, G. L. (1982). Relationship of plasma testosterone concentrations to pituitary–ovarian hormone secretion during the bovine oestrous cycle and the effects of testosterone propionate administered during luteal regression. Biol. Reprod. 27, 790–801.
Relationship of plasma testosterone concentrations to pituitary–ovarian hormone secretion during the bovine oestrous cycle and the effects of testosterone propionate administered during luteal regression.Crossref | GoogleScholarGoogle Scholar | 6816303PubMed |

Kotwica, J., Rekawiecki, R., and Duras, M. (2004). Stimulatory influence of progesterone on its own synthesis in bovine corpus luteum. Bull. Vet. Inst. Pulawy 48, 139–145.

Kowalik, M. K., Rekawiecki, R., and Kotwica, J. (2013). The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod. Biol. 13, 279–289.
The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 24287036PubMed |

Krzymowski, T., and Stefańczyk-Krzymowska, S. (2004). The oestrous cycle and early pregnancy – a new concept of local endocrine regulation. Vet. J. 168, 285–296.
The oestrous cycle and early pregnancy – a new concept of local endocrine regulation.Crossref | GoogleScholarGoogle Scholar | 15501146PubMed |

Laven, R. A., and Peters, A. R. (1996). Bovine retained placenta: aetiology, pathogenesis and economic loss. Vet. Rec. 139, 465–471.
Bovine retained placenta: aetiology, pathogenesis and economic loss.Crossref | GoogleScholarGoogle Scholar | 8938967PubMed |

Lee, Y. J., and Gorski, J. (1996). Oestrogen-induced transcription of the progesterone receptor gene does not parallel oestrogen receptor occupancy. Proc. Natl. Acad. Sci. USA 93, 15180–15184.
Oestrogen-induced transcription of the progesterone receptor gene does not parallel oestrogen receptor occupancy.Crossref | GoogleScholarGoogle Scholar | 8986784PubMed |

Lioutas, C., Einspanier, A., Kascheike, B., Walther, N., and Ivell, R. (1997). An autocrine progesterone positive feedback loop mediates oxytocin upregulation in bovine granulosa cells during luteinisation. Endocrinology 138, 5059–5062.
An autocrine progesterone positive feedback loop mediates oxytocin upregulation in bovine granulosa cells during luteinisation.Crossref | GoogleScholarGoogle Scholar | 9348240PubMed |

Misao, R., Nakanishi, Y., Iwagaki, S., Fujimoto, J., and Tamaya, T. (1998). Expression of progesterone receptor isoforms in corpora lutea of human subjects: correlation with serum oestrogen and progesterone concentrations. Mol. Hum. Reprod. 4, 1045–1052.
Expression of progesterone receptor isoforms in corpora lutea of human subjects: correlation with serum oestrogen and progesterone concentrations.Crossref | GoogleScholarGoogle Scholar | 9835356PubMed |

Mulac-Jericevic, B., and Conneely, O. M. (2004). Reproductive tissue selective actions of progesterone receptors. Reproduction 128, 139–146.
Reproductive tissue selective actions of progesterone receptors.Crossref | GoogleScholarGoogle Scholar | 15280552PubMed |

Niswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., and McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29.
| 10617764PubMed |

Okuda, K., Miyamoto, A., Sauerwein, H., Schweigert, F. J., and Schams, D. (1992). Evidence for oxytocin receptors in cultured bovine luteal cells. Biol. Reprod. 46, 1001–1006.
Evidence for oxytocin receptors in cultured bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 1327197PubMed |

Okuda, K., Uenoyama, Y., Berisha, B., Lange, I. G., Taniguchi, H., Kobayashi, S., Miyamoto, A., and Schams, D. (2001). Oestradiol-17beta is produced in bovine corpus luteum. Biol. Reprod. 65, 1634–1639.
Oestradiol-17beta is produced in bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 11717122PubMed |

Ottander, U., Hosokawa, K., Liu, K., Bergh, A., Ny, T., and Olofsson, J. I. (2000). A putative stimulatory role of progesterone acting via progesterone receptors in the steroidogenic cells of the human corpus luteum. Biol. Reprod. 62, 655–663.
A putative stimulatory role of progesterone acting via progesterone receptors in the steroidogenic cells of the human corpus luteum.Crossref | GoogleScholarGoogle Scholar | 10684807PubMed |

Pieber, D., Allport, V. C., and Bennett, P. R. (2001). Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion. Eur. J. Pharmacol. 427, 7–11.
Progesterone receptor isoform A inhibits isoform B-mediated transactivation in human amnion.Crossref | GoogleScholarGoogle Scholar | 11553358PubMed |

Prakash, B. S., Meyer, H. H., Schallenberger, E., and van de Wiel, D. F. (1987). Development of a sensitive enzyme immunoassay (EIA). for progesterone determination in unextracted bovine plasma using the second-antibody technique. J. Steroid Biochem. Mol. Biol. 28, 623–627.
Development of a sensitive enzyme immunoassay (EIA). for progesterone determination in unextracted bovine plasma using the second-antibody technique.Crossref | GoogleScholarGoogle Scholar |

Rekawiecki, R., and Kotwica, J. (2007). Molecular regulation of progesterone (P4) synthesis within the bovine corpus luteum (CL). Vet. Med. 52, 405–412.

Rekawiecki, R., and Kotwica, J. (2008). Involvement of progesterone, oxytocin and noradrenaline in the molecular regulation of steroidogenesis in the corpus luteum of the cow. Bull. Vet. Inst. Pulawy 52, 573–580.

Rekawiecki, R., Nowik, M., and Kotwica, J. (2005). Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells. Prostaglandins Other Lipid Mediat. 78, 169–184.
Stimulatory effect of LH, PGE2 and progesterone on StAR protein, cytochrome P450 cholesterol side chain cleavage and 3beta hydroxysteroid dehydrogenase gene expression in bovine luteal cells.Crossref | GoogleScholarGoogle Scholar | 16303614PubMed |

Rekawiecki, R., Kowalik, M. K., Slonina, D., and Kotwica, J. (2008). Regulation of progesterone synthesis and action in bovine corpus luteum. J. Physiol. Pharmacol. 59, 75–89.
| 19261973PubMed |

Rekawiecki, R., Rutkowska, J., and Kotwica, J. (2012). Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod. Biol. 12, 362–367.
Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 23229008PubMed |

Sakumoto, R., Vermehren, M., Kenngott, R. A. M., Okuda, K., and Sinowatz, F. (2010). Changes in the levels of progesterone receptor mRNA and protein in the bovine corpus luteum during the oestrous cycle. J. Reprod. Dev. 56, 219–222.
Changes in the levels of progesterone receptor mRNA and protein in the bovine corpus luteum during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 19996549PubMed |

Savouret, J. F., Misrahi, M., Loosfelt, H., Atger, M., Bailly, A., Perrot-Applanat, M., Vu Hai, M. T., Guiochon-Mantel, A., Jolivet, A., and Lorenzo, F. (1989). Molecular and cellular biology of mammalian progesterone receptors. Recent Prog. Horm. Res. 45, 65–116, discussion 116–120.
| 2682849PubMed |

Tamane, R., Pilmane, M., Jemeļjanovs, A., and Dabuzinskiene, A. (2004). Expression of progesterone receptors in bovine corpus luteum during pregnancy. Medicina (Kaunas) 40, 459–466.
| 15170416PubMed |

Tsang, P. C., Walton, J. S., and Hansel, W. (1990). Oxytocin-specific RNA, oxytocin and progesterone concentrations in corpora lutea of heifers treated with oxytocin. J. Reprod. Fertil. 89, 77–84.
Oxytocin-specific RNA, oxytocin and progesterone concentrations in corpora lutea of heifers treated with oxytocin.Crossref | GoogleScholarGoogle Scholar | 1695681PubMed |

Wehling, M., and Lösel, R. (2006). Non-genomic steroid hormone effects: membrane or intracellular receptors? J. Steroid Biochem. Mol. Biol. 102, 180–183.
Non-genomic steroid hormone effects: membrane or intracellular receptors?Crossref | GoogleScholarGoogle Scholar | 17113980PubMed |

Wei, L. L., Krett, N. L., Francis, M. D., Gordon, D. F., Wood, W. M., O’Malley, B. W., and Horwitz, K. B. (1988). Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells. Mol. Endocrinol. 2, 62–72.
Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells.Crossref | GoogleScholarGoogle Scholar | 3398843PubMed |

Wen, D. X., Xu, Y. F., Mais, D. E., Goldman, M. E., and McDonnell, D. P. (1994). The A and B isoforms of the human progesterone receptor operate through distinct signalling pathways within target cells. Mol. Cell. Biol. 14, 8356–8364.
The A and B isoforms of the human progesterone receptor operate through distinct signalling pathways within target cells.Crossref | GoogleScholarGoogle Scholar | 7969170PubMed |

Williams, K. C., Renthal, N. E., Condon, J. C., Gerard, R. D., and Mendelson, C. R. (2012). MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labour. Proc. Natl. Acad. Sci. USA 109, 7529–7534.
MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labour.Crossref | GoogleScholarGoogle Scholar | 22529366PubMed |

Woodman, M. E. (2008). Direct PCR of intact bacteria (colony PCR). Curr. Protoc. Microbiol. 9, A.3.D.1–A.3.D.6.
Direct PCR of intact bacteria (colony PCR).Crossref | GoogleScholarGoogle Scholar |

Zhao, S., and Fernald, R. D. (2005). Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064.
Comprehensive algorithm for quantitative real-time polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 16241897PubMed |