Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Mammalian fertility preservation through cryobiology: value of classical comparative studies and the need for new preservation options

Pierre Comizzoli A B and David E. Wildt A
+ Author Affiliations
- Author Affiliations

A Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012 MRC 5502, Washington, DC 20013, USA.

B Corresponding author. Email: comizzolip@si.edu

Reproduction, Fertility and Development 26(1) 91-98 https://doi.org/10.1071/RD13259
Published: 5 December 2013

Abstract

Human-related fertility preservation strategies have enormous potential for helping sustain and protect other species, especially to assist managing or ‘rescuing’ the genomes of genetically valuable individuals, including endangered species. However, wider-scale applications are limited by significant physiological variations among species, as well as a lack of fundamental knowledge of basic reproductive traits and cryosensitivity. Systematic and comparative cryopreservation studies (e.g. on membrane biophysical properties and resilience to freezing temperatures) are required to successfully recover gametes and gonadal tissues after thawing and eventually produce healthy offspring. Such data are currently available for humans and a few laboratory and livestock animals, with virtually all other species, including wildlife, having gone unstudied. Interestingly, there also are commonalities among taxa that allow a protocol developed for one species to provide useful information or guidance for another. However, when a rare animal unexpectedly dies there is no time for a prospective understanding of that species’ biophysical traits. Because the odds of success will be much lower in such instances, it is essential that more fundamental studies be directed at more species. But also worthwhile is thinking beyond these systematic characterisations to consider the potential of a ‘universal preservation protocol’ for animal biomaterials.

Additional keywords: biobanking, endangered species, gametes, gonadal tissues, long term storage, universal protocol.


References

Anel, L., Gomes-Alves, S., Alvarez, M., Borragan, S., Anel, E., Nicolas, M., Martinez-Pastor, F., and de Paz, P. (2010). Effect of basic factors of extender composition on post-thawing quality of brown bear electroejaculated spermatozoa. Theriogenology 74, 643–651.
Effect of basic factors of extender composition on post-thawing quality of brown bear electroejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVersLjK&md5=e8f81f39b0485417bed22d5cf35c359fCAS | 20494423PubMed |

Arav, A., and Natan, Y. (2009). Directional freezing: a solution to the methodological challenges to preserve large organs. Semin. Reprod. Med. 27, 438–442.
Directional freezing: a solution to the methodological challenges to preserve large organs.Crossref | GoogleScholarGoogle Scholar | 19806511PubMed |

Baker, M. (2012). Biorepositories: building better biobanks. Nature 486, 141–146.
Biorepositories: building better biobanks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot1CmtL4%3D&md5=bba6649d0ddf3bbcb00f028e4f026833CAS | 22678297PubMed |

Cleary, M., Shaw, J. M., Jenkin, G., and Trounson, A. O. (2004). Influence of hormone environment and donor age on cryopreserved common wombat (Vombatus ursinus) ovarian tissue xenografted into nude mice. Reprod. Fertil. Dev. 16, 699–707.
Influence of hormone environment and donor age on cryopreserved common wombat (Vombatus ursinus) ovarian tissue xenografted into nude mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGkurfO&md5=4041770fcfb59bfa916b16275d6fe8ceCAS | 15740693PubMed |

Comizzoli, P., and Wildt, D. E. (2012a). On the horizon for fertility preservation in domestic and wild carnivores. Reprod. Domest. Anim. 47, 261–265.
On the horizon for fertility preservation in domestic and wild carnivores.Crossref | GoogleScholarGoogle Scholar | 23279514PubMed |

Comizzoli, P., and Wildt, D. E. (2012b). Centrosomal functions and dysfunctions in cat spermatozoa. In ‘The Centrosome’. (Ed. H. Schatten.) pp. 49–58. (Humana Press: New York.)

Comizzoli, P., Wildt, D. E., and Pukazhenthi, B. S. (2004). Effect of 1,2-propanediol versus 1,2-ethanediol on subsequent oocyte maturation, spindle integrity, fertilization and embryo development in vitro in the domestic cat. Biol. Reprod. 71, 598–604.
Effect of 1,2-propanediol versus 1,2-ethanediol on subsequent oocyte maturation, spindle integrity, fertilization and embryo development in vitro in the domestic cat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgurg%3D&md5=2158ddc21b3f936fa4e875ffe7f66811CAS | 15084479PubMed |

Comizzoli, P., Wildt, D. E., and Pukazhenthi, B. S. (2008). Impact of anisosmotic conditions on structural and functional integrity of cumulus-oocyte complexes at the germinal vesicle stage in the domestic cat. Mol. Reprod. Dev. 75, 345–354.
Impact of anisosmotic conditions on structural and functional integrity of cumulus-oocyte complexes at the germinal vesicle stage in the domestic cat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovVCqtw%3D%3D&md5=cb556a6b343adbe581d09da7fc521d58CAS | 17701993PubMed |

Comizzoli, P., Songsasen, N., and Wildt, D. E. (2010). Protecting and extending fertility for females of wild and endangered mammals. Cancer Treat. Res. 156, 87–100.
Protecting and extending fertility for females of wild and endangered mammals.Crossref | GoogleScholarGoogle Scholar | 20811827PubMed |

Comizzoli, P., Songsasen, N., Hagedorn, M., and Wildt, D. E. (2012). Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species. Theriogenology 78, 1666–1681.
Comparative cryobiological traits and requirements for gametes and gonadal tissues collected from wildlife species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38jit1yntQ%3D%3D&md5=8f84d952bee97e4f41a2cc7655cb90deCAS | 22704386PubMed |

Critser, J. K., Agca, Y., and Woods, E. (2002). Cryopreservation of immature and mature gametes. In ‘Assisted Reproductive Technology: Accomplishment and New Horizons’. (Eds C. J. De Jonge and C. L. R. Barratt.) pp. 144–166. (Cambridge University Press: Cambridge, UK.)

Crosier, A. E., Pukazhenthi, B. S., Henghali, J. N., Howard, J., Dickman, A. J., Marker, L., and Wildt, D. E. (2006). Cryopreservation of spermatozoa from wild-born Namibian cheetahs (Acinonyx jubatus) and influence of glycerol on cryosurvival. Cryobiology 52, 169–181.
Cryopreservation of spermatozoa from wild-born Namibian cheetahs (Acinonyx jubatus) and influence of glycerol on cryosurvival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1yqtrk%3D&md5=d98ce485e1ad5bf6906b7fc17ba71f70CAS | 16412415PubMed |

Crowe, J. H., Hoekstra, F. A., and Crowe, L. M. (1992). Anhydrobiosis. Annu. Rev. Physiol. 54, 579–599.
Anhydrobiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFSmt7c%3D&md5=698614033a0400d6a177a67c287b49f4CAS | 1562184PubMed |

Ehmcke, J., and Schlatt, S. (2008). Animal models for fertility preservation in the male. Reproduction 136, 717–723.
Animal models for fertility preservation in the male.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXns1CktQ%3D%3D&md5=5d32a86497763dce18a8563777500dfcCAS | 18515311PubMed |

Gilmore, J. A., McGann, L. E., Ashworth, E., Acker, J. P., Raath, J. P., Bush, M., and Critser, J. K. (1998). Fundamental cryobiology of selected African mammalian spermatozoa and its role in biodiversity preservation through the development of genome resource banking. Anim. Reprod. Sci. 53, 277–297.
Fundamental cryobiology of selected African mammalian spermatozoa and its role in biodiversity preservation through the development of genome resource banking.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FltFSntA%3D%3D&md5=a555972f8afb1a1fa19d1677df479571CAS | 9835382PubMed |

Gosálvez, J., López-Fernández, C., Fernández, J. L., Gouraud, A., and Holt, W. V. (2011). Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol. Reprod. Dev. 78, 951–961.
Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species.Crossref | GoogleScholarGoogle Scholar | 21919111PubMed |

Graves-Herring, J. E., Wildt, D. E., and Comizzoli, P. (2013). Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature. Biol. Reprod. 88, 139.
Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature.Crossref | GoogleScholarGoogle Scholar | 23575153PubMed |

Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E. H., Brittsan, M., Byers, M., Henley, M., Laterveer, M., Leong, J. C., McCarthy, M., Meyers, S., Nelson, B. D., Petersen, D., Tiersch, T., Cuevas Uribe, R., and Wildt, D. E. (2012). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS One 7, e33354.
Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktF2it7Y%3D&md5=b1925dc657e9d37ee1494e4fae3a9e65CAS | 22413020PubMed |

Heo, Y. S., Nagrath, S., Moore, A. L., Malinowska, I., Zenali, M., Kwiatkowski, D., and Toner, M. (2011). Universal vitrification of rare cancer cells from different origins by ultra-fast cooling. Cryobiology 63, 326.
Universal vitrification of rare cancer cells from different origins by ultra-fast cooling.Crossref | GoogleScholarGoogle Scholar |

Hermes, R., Göritz, F., Saragusty, J., Sós, E., Molnar, V., Reid, C. E., Schwarzenberger, F., and Hildebrandt, T. B. (2009). First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology 71, 393–399.
First successful artificial insemination with frozen-thawed semen in rhinoceros.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FgtlyrtQ%3D%3D&md5=c785609bbded9574beb4b17e37b0005dCAS | 19007979PubMed |

Holt, W. V. (2011). Mechanisms of sperm storage in the female reproductive tract: an interspecies comparison. Reprod. Domest. Anim. 46, 68–74.
Mechanisms of sperm storage in the female reproductive tract: an interspecies comparison.Crossref | GoogleScholarGoogle Scholar | 21884282PubMed |

Hovatta, O., Foudila, T., Siegberg, R., Johansson, K., von Smitten, K., and Reima, I. (1996). Pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen-thawed testicular biopsy specimen. Hum. Reprod. 11, 2472–2473.
Pregnancy resulting from intracytoplasmic injection of spermatozoa from a frozen-thawed testicular biopsy specimen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7jsFGquw%3D%3D&md5=23f4d07a9f0b079c15ebc581a1fa7927CAS | 8981136PubMed |

Howard, J. G., and Wildt, D. E. (2009). Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 71, 130–148.
Approaches and efficacy of artificial insemination in felids and mustelids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjnt1Crug%3D%3D&md5=61bc86e676a1c96429ca3ae7aa44074aCAS | 18996580PubMed |

Huang, Y., Zhang, H., Li, D., Zhang, G., Wei, R., Huang, Z., Zhou, Y., Zhou, Q., Liu, Y., Wildt, D. E., and Hull, V. (2012). Relationship of the estrogen surge and multiple mates to cub paternity in the giant panda (Ailuropoda melanoleuca): implications for optimal timing of copulation or artificial insemination. Biol. Reprod. 87, 112.
Relationship of the estrogen surge and multiple mates to cub paternity in the giant panda (Ailuropoda melanoleuca): implications for optimal timing of copulation or artificial insemination.Crossref | GoogleScholarGoogle Scholar | 22976278PubMed |

Jewgenow, K., Wiedemann, C., Bertelsen, M. F., and Ringleb, J. (2011). Cryopreservation of mammalian ovaries and oocytes. Intl. Zoo. Yrbk 45, 124–132.
Cryopreservation of mammalian ovaries and oocytes.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. D., O’Callaghan, P., McGowan, M. R., and Phillips, N. J. (1997). Characteristics of koala (Phascolarctos cinereus adustus) semen collected by artificial vagina. J. Reprod. Fertil. 109, 319–323.
Characteristics of koala (Phascolarctos cinereus adustus) semen collected by artificial vagina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2gtbk%3D&md5=0230c6ca45353ec26416f71f30450b0dCAS | 9155742PubMed |

Kiso, W. K., Brown, J. L., Siewerdt, F., Schmitt, D. L., Olson, D., Crichton, E. G., and Pukazhenthi, B. S. (2011). Liquid semen storage in elephants (Elephas maximus and Loxodonta africana): species differences and storage optimization. J. Androl. 32, 420–431.
Liquid semen storage in elephants (Elephas maximus and Loxodonta africana): species differences and storage optimization.Crossref | GoogleScholarGoogle Scholar | 21127305PubMed |

Leibo, S. P., and Songsasen, N. (2002). Cryopreservation of gametes and embryos of nondomestic species. Theriogenology 57, 303–326.
Cryopreservation of gametes and embryos of nondomestic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFyltw%3D%3D&md5=d21d35a73acd959bc5a859ab7082f25dCAS | 11775977PubMed |

Lermen, D., Blömeke, B., Browne, R., Clarke, A., Dyce, P. W., Fixemer, T., Müller, P., Fuhr, G. R., Holt, W. V., Jewgenow, K., Lloyd, R. E., Lötters, S., Paulus, M., Reid, G. M., Rapoport, D. H., Rawson, D., Ringleb, J., Ryder, O. A., Spörl, G., Schmitt, T., Veith, M., and Mueller, P. (2009). Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes. Mol. Ecol. 18, 1030–1033.
Cryobanking of viable biomaterials: implementation of new strategies for conservation purposes.Crossref | GoogleScholarGoogle Scholar | 19207252PubMed |

Mazur, P., Leibo, S. P., and Seidel, G. E. (2008). Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol. Reprod. 78, 2–12.
Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1I%3D&md5=248a87c4d3a5a97cc8ce34c5750808cdCAS | 17901073PubMed |

McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| 1:CAS:528:DC%2BD3cXpsl2msA%3D%3D&md5=4fed7c6456c743c05e762cdd8a760c46CAS | 10793638PubMed |

Okano, T., Nakamura, S., Komatsu, T., Murase, T., Miyazawa, K., Asano, M., and Tsubota, T. (2006). Characteristics of frozen–thawed spermatozoa cryopreserved with different concentrations of glycerol in captive Japanese black bears (Ursus thibetanus japonicus). J. Vet. Med. Sci. 68, 1101–1104.
Characteristics of frozen–thawed spermatozoa cryopreserved with different concentrations of glycerol in captive Japanese black bears (Ursus thibetanus japonicus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12isbzN&md5=0fda7ec989de500d0f0184addfb45dc5CAS | 17085891PubMed |

Paris, M. C., Snow, M., Cox, S. L., and Shaw, J. M. (2004). Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 61, 277–291.
Xenotransplantation: a tool for reproductive biology and animal conservation?Crossref | GoogleScholarGoogle Scholar | 14662128PubMed |

Pope, C. E., Gómez, M. C., and Dresser, B. L. (2006). In vitro production and transfer of cat embryos in the 21st century. Theriogenology 66, 59–71.
In vitro production and transfer of cat embryos in the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zls1KmtA%3D%3D&md5=2573b6a91a98c3c561e5e6c2cdae2067CAS | 16620940PubMed |

Pukazhenthi, B., Spindler, R., Wildt, D., Bush, L. M., and Howard, J. (2002). Osmotic properties of spermatozoa from felids producing different proportions of pleiomorphisms: influence of adding and removing cryoprotectant. Cryobiology 44, 288–300.
Osmotic properties of spermatozoa from felids producing different proportions of pleiomorphisms: influence of adding and removing cryoprotectant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFSjt78%3D&md5=41a63d0646a2cc19df9da01c822544c2CAS | 12237094PubMed |

Pukazhenthi, B. S., Lapiana, F., Padilla, L., Santiestevan, J., Coutinho da Silva, M., Alvarenga, M., and Wildt, D. E. (2010). Improved sperm cryopreservation in the critically endangered Przewalski’s horse (Equus ferus przewalskii) using different cryoprotectants. Biol. Reprod. 83, 675.

Pukazhenthi, B. S., Togna, G. D., Padilla, L., Smith, D., Sanchez, C., Pelican, K., and Sanjur, O. I. (2011). Ejaculate traits and sperm cryopreservation in the endangered Baird’s tapir (Tapirus bairdii). J. Androl. 32, 260–270.
Ejaculate traits and sperm cryopreservation in the endangered Baird’s tapir (Tapirus bairdii).Crossref | GoogleScholarGoogle Scholar | 21051586PubMed |

Robeck, T. R., and O’Brien, J. K. (2004). Effect of cryopreservation methods and precryopreservation storage on bottlenose dolphin (Tursiops truncatus) spermatozoa. Biol. Reprod. 70, 1340–1348.
Effect of cryopreservation methods and precryopreservation storage on bottlenose dolphin (Tursiops truncatus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFeltLg%3D&md5=33af05534e8242031b66add95f75f0b3CAS | 14711792PubMed |

Robeck, T. R., Gearhart, S. A., Steinman, K. J., Katsumata, E., Loureiro, J. D., and O’Brien, J. K. (2011). In vitro sperm characterization and development of a sperm cryopreservation method using directional solidification in the killer whale (Orcinus orca). Theriogenology 76, 267–279.
In vitro sperm characterization and development of a sperm cryopreservation method using directional solidification in the killer whale (Orcinus orca).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MngtVSjug%3D%3D&md5=4893422611d89ea0aed198c9b0947a39CAS | 21496896PubMed |

Rossato, M., Balercia, G., Lucarelli, G., Foresta, C., and Mantero, F. (2002). Role of seminal osmolarity in the reduction of human sperm motility. Int. J. Androl. 25, 230–235.
Role of seminal osmolarity in the reduction of human sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vitlCrsw%3D%3D&md5=67c3cf48f2ea572dde9d7c185a4c3be4CAS | 12180413PubMed |

Santymire, R. M., Marinari, P. E., Kreeger, J. S., Wildt, D. E., and Howard, J. (2006). Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality. Cryobiology 53, 37–50.
Sperm viability in the black-footed ferret (Mustela nigripes) is influenced by seminal and medium osmolality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntV2mtLk%3D&md5=3a171e9064a6696b9678bed2a1de5c89CAS | 16712829PubMed |

Saragusty, J., and Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141, 1–19.
Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVehsrc%3D&md5=5fd9366ef0d3b387d68fe55bb4c2e710CAS | 20974741PubMed |

Saragusty, J., Hildebrandt, T. B., Behr, B., Knieriem, A., Kruse, J., and Hermes, R. (2009). Successful cryopreservation of Asian elephant (Elephas maximus) spermatozoa. Anim. Reprod. Sci. 115, 255–266.
Successful cryopreservation of Asian elephant (Elephas maximus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2iu78%3D&md5=9487e2e6d4fe55974276adb2f0d65d92CAS | 19111407PubMed |

Schiewe, M. C., Bush, M., de Vos, V., and Wildt, D. E. (1991). Semen characteristics, sperm freezing and endocrine profiles in free-ranging wildebeest (Connochaetes taurinus) and greater kudu (Tragelaphus strepsiceros). J. Zoo Wildl. Med. 22, 58–72.

Songsasen, N., and Comizzoli, P. (2009). A historic overview of embryos and oocyte preservation in the world of mammalian in vitro fertilization and biotechnology. In ‘Preservation of Human Oocytes’. (Eds A. Borini and G. Coticchio.) pp. 1–11. (Informa Healthcare: London.)

Songsasen, N., Ratterree, M. S., VandeVoort, C. A., Pegg, D. E., and Leibo, S. P. (2002). Permeability characteristics and osmotic sensitivity of rhesus monkey (Macaca mulatta) oocytes. Hum. Reprod. 17, 1875–1884.
Permeability characteristics and osmotic sensitivity of rhesus monkey (Macaca mulatta) oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vhtlylsQ%3D%3D&md5=4c76be9398c663ad94a8fe61eae657c5CAS | 12093854PubMed |

Songsasen, N., Comizzoli, P., Nagashima, J., Fujihara, M., and Wildt, D. E. (2012). The domestic dog and cat as models for understanding the regulation of ovarian follicle development in vitro. Reprod. Domest. Anim. 47, 13–18.
The domestic dog and cat as models for understanding the regulation of ovarian follicle development in vitro.Crossref | GoogleScholarGoogle Scholar | 23279457PubMed |

Spindler, R. E., Huang, Y., Howard, J. G., Wang, P., Zhang, H., Zhang, G., and Wildt, D. E. (2004). Acrosomal integrity and capacitation are not influenced by sperm cryopreservation in the giant panda. Reproduction 127, 547–556.
Acrosomal integrity and capacitation are not influenced by sperm cryopreservation in the giant panda.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqurc%3D&md5=3cf6e35d069ad54a4ec0e89e2695c223CAS | 15129010PubMed |

Stoops, M. A., Bond, J. B., Bateman, H. L., Campbell, M. K., Levens, G. P., Bowsher, T. R., Ferrell, S. T., and Swanson, W. F. (2007). Comparison of different sperm cryopreservation procedures on post-thaw quality and heterologous in vitro fertilisation success in the ocelot (Leopardus pardalis). Reprod. Fertil. Dev. 19, 685–694.
Comparison of different sperm cryopreservation procedures on post-thaw quality and heterologous in vitro fertilisation success in the ocelot (Leopardus pardalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Kgtrk%3D&md5=3d772b494e143b05e5093669c632d9e3CAS | 17601417PubMed |

Stoops, M. A., Atkinson, M. W., Blumer, E. S., Campbell, M. K., and Roth, T. L. (2010). Semen cryopreservation in the Indian rhinoceros (Rhinoceros unicornis). Theriogenology 73, 1104–1115.
Semen cryopreservation in the Indian rhinoceros (Rhinoceros unicornis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCksr4%3D&md5=42d2482a6bb767b274799a709dff442dCAS | 20172598PubMed |

Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtr4%3D&md5=75dd90d3c8fab8fc6a14e9669cf648b7CAS | 12887276PubMed |

Tharasanit, T., Manee-In, S., Buarpung, S., Chatdarong, K., Lohachit, C., and Techakumphu, M. (2011). Successful pregnancy following transfer of feline embryos derived from vitrified immature cat oocytes using ‘stepwise’ cryoprotectant exposure technique. Theriogenology 76, 1442–1449.
Successful pregnancy following transfer of feline embryos derived from vitrified immature cat oocytes using ‘stepwise’ cryoprotectant exposure technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isbjI&md5=b7e6de3dc90bfcffba7100bcd184797cCAS | 21820721PubMed |

Thongtip, N., Mahasawangkul, S., Thitaram, C., Pongsopavijitr, P., Kornkaewrat, K., Pinyopummin, A., Angkawanish, T., Jansittiwate, S., Rungsri, R., Boonprasert, K., Wongkalasin, W., Homkong, P., Dejchaisri, S., Wajjwalku, W., and Saikhun, K. (2009). Successful artificial insemination in the Asian elephant (Elephas maximus) using chilled and frozen–thawed semen. Reprod. Biol. Endocrinol. 7, 75.
Successful artificial insemination in the Asian elephant (Elephas maximus) using chilled and frozen–thawed semen.Crossref | GoogleScholarGoogle Scholar | 19615097PubMed |

Waimey, K. E., Duncan, F. E., Su, H. I., Smith, K., Wallach, H., Jona, K., Coutifaris, C., Gracia, C. R., Shea, L. D., Brannigan, R. E., Chang, J., Zelinski, M. B., Stouffer, R. L., Taylor, R. L., and Woodruff, T. K. (2013). Future Directions in Oncofertility and Fertility Preservation: a report from the 2011 Oncofertility Consortium Conference. J. Adolesc. Young Adult Oncol. 2, 25–30.
Future Directions in Oncofertility and Fertility Preservation: a report from the 2011 Oncofertility Consortium Conference.Crossref | GoogleScholarGoogle Scholar | 23610740PubMed |

Wildt, D. E., Schiewe, M. C., Schmidt, P. M., Goodrowe, K. L., Howard, J. G., Phillips, L. G., O’Brien, S. J., and Bush, M. (1986). Developing animal model systems for embryo technologies in rare and endangered wildlife. Theriogenology 25, 33–51.
Developing animal model systems for embryo technologies in rare and endangered wildlife.Crossref | GoogleScholarGoogle Scholar |

Wildt, D. E., Bush, M., O’Brien, S. J., Murray, N. D., Taylor, A., and Graves, J. A. (1991). Semen characteristics in free-living koalas (Phascolarctos cinereus). J. Reprod. Fertil. 92, 99–107.
Semen characteristics in free-living koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Cqu7c%3D&md5=d474fba4b67b98e05f11969587de43b5CAS | 2056498PubMed |

Wildt, D. E., Rall, W. F., Critser, J. K., Monfort, S. L., and Seal, U. S. (1997). Genome resource banks: ‘living collections’ for biodiversity conservation. Bioscience 47, 689–698.
Genome resource banks: ‘living collections’ for biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Wildt, D. E., Ellis, S. E., Janssen, D., and Buff, J. (2003). Toward more effective reproductive science in conservation. In ‘Reproductive Sciences and Integrated Conservation’. (Eds W. V. Holt, A. Pickard, J. C. Rodger and D. E. Wildt.) pp. 2–20. (Cambridge University Press: Cambridge.)

Wildt, D. E., Comizzoli, P., Pukazhenthi, B., and Songsasen, N. (2010). Lessons from biodiversity: the value of nontraditional species to advance reproductive science, conservation, and human health. Mol. Reprod. Dev. 77, 397–409.
Lessons from biodiversity: the value of nontraditional species to advance reproductive science, conservation, and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKqtr0%3D&md5=abaaf367938523496a27c03201828cf6CAS | 19967718PubMed |

Wolfe, B. A., and Wildt, D. E. (1996). Development to blastocysts of domestic cat oocytes matured and fertilized in vitro after prolonged cold storage. J. Reprod. Fertil. 106, 135–141.
Development to blastocysts of domestic cat oocytes matured and fertilized in vitro after prolonged cold storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCmuw%3D%3D&md5=1994d7883c4e0417a2e6f7cdfa44ad4fCAS | 8667338PubMed |

Woods, E. J., Benson, J. D., Agca, Y., and Critser, J. K. (2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.
Fundamental cryobiology of reproductive cells and tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1amurw%3D&md5=49627b7c52dbbb0caafdf716a4e4e853CAS | 15094091PubMed |

Yang, C. R., Miao, D. Q., Zhang, Q. H., Guo, L., Tong, J. S., Wei, Y., Huang, X., Hou, Y., Schatten, H., Liu, Z., and Sun, Q. Y. (2010). Short-term preservation of porcine oocytes in ambient temperature: novel approaches. PLoS One 5, e14242.
Short-term preservation of porcine oocytes in ambient temperature: novel approaches.Crossref | GoogleScholarGoogle Scholar | 21151922PubMed |

Yavin, S., and Arav, A. (2007). Measurement of essential physical properties of vitrification solutions. Theriogenology 67, 81–89.
Measurement of essential physical properties of vitrification solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12rsbrL&md5=f66eb79191a1d31f4dfc7e17b3b04638CAS | 17070573PubMed |

Zee, Y. P., Holt, W. V., Gosalvez, J., Allen, C. D., Nicolson, V., Pyne, M., Burridge, M., Carrick, F. N., and Johnston, S. D. (2008). Dimethylacetamide can be used as an alternative to glycerol for the successful cryopreservation of koala (Phascolarctos cinereus) spermatozoa. Reprod. Fertil. Dev. 20, 724–733.
Dimethylacetamide can be used as an alternative to glycerol for the successful cryopreservation of koala (Phascolarctos cinereus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCnu78%3D&md5=ee49343073c16d7c577ed0242a7947c1CAS | 18671920PubMed |