Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Fibroblast growth factor 2 induces the precocious development of endothelial cell networks in bovine luteinising follicular cells

Mhairi Laird A B C , Kathryn J. Woad A B , Morag G. Hunter B , George E. Mann B and Robert S. Robinson A D
+ Author Affiliations
- Author Affiliations

A School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.

B School of Biosciences, University of Nottingham, Sutton Bonington campus, Loughborough, Leicestershire LE12 5RD, UK.

C Present address: Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK.

D Corresponding author. Email: bob.robinson@nottingham.ac.uk

Reproduction, Fertility and Development 25(2) 372-386 https://doi.org/10.1071/RD12182

Abstract

The transition from follicle to corpus luteum represents a period of intense angiogenesis; however, the exact roles of angiogenic factors during this time remain to be elucidated. Thus, the roles of vascular endothelial growth factor (VEGF) A, fibroblast growth factor (FGF) 2 and LH in controlling angiogenesis were examined in the present study. A novel serum-free luteinising follicular angiogenesis culture system was developed in which progesterone production increased during the first 5 days and was increased by LH (P < 0.01). Blockade of signalling from FGF receptors (SU5402; P < 0.001) and, to a lesser extent, VEGF receptors (SU1498; P < 0.001) decreased the development of endothelial cell (EC) networks. Conversely, FGF2 dose-dependently (P < 0.001) induced the precocious transition of undeveloped EC islands into branched networks associated with a twofold increase in the number of branch points (P < 0.001). In contrast, VEGFA had no effect on the area of EC networks or the number of branch points. LH had no effect on the area of EC networks, but it marginally increased the number of branch points (P < 0.05) and FGF2 production (P < 0.001). Surprisingly, progesterone production was decreased by FGF2 (P < 0.01) but only on Day 5 of culture. Progesterone production was increased by SU5402 (P < 0.001) and decreased by SU1498 (P < 0.001). These results demonstrate that FGF and VEGF receptors play a fundamental role in the formation of luteal EC networks in vitro, which includes a novel role for FGF2 in induction of EC sprouting.

Additional keywords: angiogenesis, cow, sprouting.


References

Amselgruber, W. M., Schafer, M., and Sinowatz, F. (1999). Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study. Anat. Histol. Embryol. 28, 157–166.
Angiogenesis in the bovine corpus luteum: an immunocytochemical and ultrastructural study.Crossref | GoogleScholarGoogle Scholar | 10458020PubMed |

Ball, S. G., Shuttleworth, C. A., and Kielty, C. M. (2007). Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J. Cell Biol. 177, 489–500.
Vascular endothelial growth factor can signal through platelet-derived growth factor receptors.Crossref | GoogleScholarGoogle Scholar | 17470632PubMed |

Beckman, J. D., Grazul-Bilska, A. T., Johnson, M. L., Reynolds, L. P., and Redmer, D. A. (2006). Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors. Endocrine 29, 467–476.
Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors.Crossref | GoogleScholarGoogle Scholar | 16943586PubMed |

Berisha, B., Schams, D., Kosmann, M., Amselgruber, W., and Einspanier, R. (2000). Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol. Reprod. 63, 1106–1114.
Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy.Crossref | GoogleScholarGoogle Scholar | 10993833PubMed |

Berisha, B., Steffl, M., Amselgruber, W., and Schams, D. (2006). Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation. Reproduction 131, 319–329.
Changes in fibroblast growth factor 2 and its receptors in bovine follicles before and after GnRH application and after ovulation.Crossref | GoogleScholarGoogle Scholar | 16452725PubMed |

Berisha, B., Steffl, M., Welter, H., Kliem, H., Meyer, H. H. D., Schams, D., and Amselgruber, W. (2008). Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles. Reprod. Fertil. Dev. 20, 258–268.
Effect of the luteinising hormone surge on regulation of vascular endothelial growth factor and extracellular matrix-degrading proteinases and their inhibitors in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 18255015PubMed |

De Smet, F., Segura, I., De Bock, K., Hohensinner, P. J., and Carmeliet, P. (2009). Mechanisms of vessel branching filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol. 29, 639–649.
Mechanisms of vessel branching filopodia on endothelial tip cells lead the way.Crossref | GoogleScholarGoogle Scholar | 19265031PubMed |

Eilken, H. M., and Adams, R. H. (2010). Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr. Opin. Cell Biol. 22, 617–625.
Dynamics of endothelial cell behavior in sprouting angiogenesis.Crossref | GoogleScholarGoogle Scholar | 20817428PubMed |

Finney, D. J. (1988). Was this in your statistics textbook? 3. Design and analysis. Exp. Agric. 24, 421–432.

Fraser, H. M., Dickson, S. E., Lunn, S. F., Wulff, C., Morris, K. D., Carroll, V. A., and Bicknell, R. (2000). Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor. Endocrinology 141, 995–1000.
Suppression of luteal angiogenesis in the primate after neutralization of vascular endothelial growth factor.Crossref | GoogleScholarGoogle Scholar | 10698175PubMed |

Fraser, H. M., Hastings, J. M., Allan, D., Morris, K. D., Rudge, J. S., and Wiegand, S. J. (2012). Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 153, 1972–1983.
Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 22334711PubMed |

Gabler, C., Plath-Gabler, A., Killian, G. J., Berisha, B., and Schams, D. (2004). Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol. Reprod. Domest. Anim. 39, 321–327.
Expression pattern of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) system members in bovine corpus luteum endothelial cells during treatment with FGF-2, VEGF or oestradiol.Crossref | GoogleScholarGoogle Scholar | 15367264PubMed |

Gilbert, I., Robert, C., Dieleman, S., Blondin, P., and Sirard, M. A. (2011). Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. Reproduction 141, 193–205.
Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period.Crossref | GoogleScholarGoogle Scholar | 21123518PubMed |

Gridley, T. (2007). Notch signaling in vascular development and physiology. Development 134, 2709–2718.
Notch signaling in vascular development and physiology.Crossref | GoogleScholarGoogle Scholar | 17611219PubMed |

Hatziapostolou, M., Polytarchou, C., Katsoris, P., Courty, J., and Papadimitriou, E. (2006). Heparin affinity regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells. J. Biol. Chem. 281, 32 217–32 226.
Heparin affinity regulatory peptide/pleiotrophin mediates fibroblast growth factor 2 stimulatory effects on human prostate cancer cells.Crossref | GoogleScholarGoogle Scholar |

Hazzard, T. M., Rohan, R. M., Molskness, T. A., Fanton, J. W., D’Amato, R. J., and Stouffer, R. L. (2002). Injection of antiangiogenic agents into the macaque preovulatory follicle: disruption of corpus luteum development and function. Endocrine 17, 199–206.
Injection of antiangiogenic agents into the macaque preovulatory follicle: disruption of corpus luteum development and function.Crossref | GoogleScholarGoogle Scholar | 12108520PubMed |

Hirschberg, R. M., Plendl, J., and Kaessmeyer, S. (2012). Alpha smooth muscle actin in the cycling ovary: an immunohistochemical study. Clin. Hemorheol. Microcirc. 50, 113–129.
| 22538540PubMed |

Hünigen, H., Bisplinghoff, P., Plendl, J., and Bahramsoltani, M. (2008). Vascular dynamics in relation to immunolocalisation of VEGF-A, VEGFR-2 and Ang-2 in the bovine corpus luteum. Acta Histochem. 110, 462–472.
Vascular dynamics in relation to immunolocalisation of VEGF-A, VEGFR-2 and Ang-2 in the bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 18541291PubMed |

Irving-Rodgers, H. F., Catanzariti, K. D., Aspden, W. J., D’Occhio, M. J., and Rodgers, R. J. (2006). Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle. Mol. Reprod. Dev. 73, 1292–1302.
Remodeling of extracellular matrix at ovulation of the bovine ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 16865721PubMed |

Joseph, C., Hunter, M. G., Sinclair, K. D., and Robinson, R. S. (2012). The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition. Reproduction 144, 361–372.
The expression, regulation and function of secreted protein, acidic, cysteine-rich in the follicle–luteal transition.Crossref | GoogleScholarGoogle Scholar | 22733805PubMed |

Kanda, S., Miyata, Y., and Kanetake, H. (2004). Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J. Biol. Chem. 279, 4007–4016.
Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt.Crossref | GoogleScholarGoogle Scholar | 14610089PubMed |

Katanasaka, Y., Ida, T., Asai, T., Maeda, N., and Oku, N. (2008). Effective delivery of an angiogenesis inhibitor by neovessel-targeted liposomes. Int. J. Pharm. 360, 219–224.
| 18565703PubMed |

Kobayashi, S., Berisha, B., Amselgruber, W. M., Schams, D., and Miyamoto, A. (2001). Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha. J. Endocrinol. 170, 369–380.
Production and localisation of angiotensin II in the bovine early corpus luteum: a possible interaction with luteal angiogenic factors and prostaglandin F2 alpha.Crossref | GoogleScholarGoogle Scholar | 11479133PubMed |

Kuhnert, F., Tam, B. Y. Y., Sennino, B., Gray, J. T., Yuan, J., Jocson, A., Nayak, N. R., Mulligan, R. C., McDonald, D. M., and Kuo, C. J. (2008). Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis. Proc. Natl Acad. Sci. USA 105, 10 185–10 190.
Soluble receptor-mediated selective inhibition of VEGFR and PDGFR beta signaling during physiologic and tumor angiogenesis.Crossref | GoogleScholarGoogle Scholar |

Kurz, H., Fehr, J., Nitschke, R., and Burkhardt, H. (2008). Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem. Cell Biol. 130, 1027–1040.
Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and alpha-smooth muscle actin: relevance for non-sprouting angiogenesis.Crossref | GoogleScholarGoogle Scholar | 18688635PubMed |

Lee, A., Christenson, L. K., Patton, P. E., Burry, K. A., and Stouffer, R. L. (1997). Vascular endothelial growth factor production by human luteinized granulosa cells in vitro. Hum. Reprod. 12, 2756–2761.
Vascular endothelial growth factor production by human luteinized granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 9455848PubMed |

Lowry, S. R. (1992). Use and misuse of multiple comparisons in animal-experiments. J. Anim. Sci. 70, 1971–1977.
| 1634420PubMed |

Masri, F. A., Xu, W., Comhair, S. A. A., Asosingh, K., Koo, M., Vasanji, A., Drazba, J., Anand-Apte, B., and Erzurum, S. C. (2007). Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L548–L554.
Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension.Crossref | GoogleScholarGoogle Scholar | 17526595PubMed |

Miyamoto, A., Shirasuna, K., Shimizu, T., Bollwein, H., and Schams, D. (2010). Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F2alpha. Soc. Reprod. Fertil. Suppl. 67, 289–304.
| 21755680PubMed |

Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. R., and Schlessinger, J. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276, 955–960.
Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors.Crossref | GoogleScholarGoogle Scholar | 9139660PubMed |

Nissen, L. J., Cao, R., Hedlund, E. M., Wang, Z., Zhao, X., Wetterskog, D., Funa, K., Brakenhielm, E., and Cao, Y. (2007). Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J. Clin. Invest. 117, 2766–2777.
Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.Crossref | GoogleScholarGoogle Scholar | 17909625PubMed |

Niswender, G. D. (2002). Molecular control of luteal secretion of progesterone. Reproduction 123, 333–339.
Molecular control of luteal secretion of progesterone.Crossref | GoogleScholarGoogle Scholar | 11882010PubMed |

Ozerdem, U., and Stallcup, W. B. (2003). Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–249.
Early contribution of pericytes to angiogenic sprouting and tube formation.Crossref | GoogleScholarGoogle Scholar | 15041800PubMed |

Papetti, M., Shujath, J., Riley, K. N., and Herman, I. M. (2003). FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways. Invest. Ophthalmol. Vis. Sci. 44, 4994–5005.
FGF-2 antagonizes the TGF-beta1-mediated induction of pericyte alpha-smooth muscle actin expression: a role for myf-5 and Smad-mediated signaling pathways.Crossref | GoogleScholarGoogle Scholar | 14578427PubMed |

Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., and Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 16, 159–178.
Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis.Crossref | GoogleScholarGoogle Scholar | 15863032PubMed |

Ravindranath, N., Littleihrig, L., Phillips, H. S., Ferrara, N., and Zeleznik, A. J. (1992). Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131, 254–260.
Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 1612003PubMed |

Redmer, D. A., Doraiswamy, V., Bortnem, B. J., Fisher, K., Jablonka-Shariff, A., Grazul-Bilska, A. T., and Reynolds, L. P. (2001). Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol. Reprod. 65, 879–889.
Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 11514354PubMed |

Reynolds, L., and Redmer, D. (1999). Growth and development of the corpus luteum. J. Reprod. Fertil. Suppl. 54, 181–191.
| 10692854PubMed |

Robinson, R. S., Nicklin, L. T., Hammond, A. J., Schams, D., Hunter, M. G., and Mann, G. E. (2007). Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle–luteal transition in the cow. Biol. Reprod. 77, 28–36.
Fibroblast growth factor 2 is more dynamic than vascular endothelial growth factor A during the follicle–luteal transition in the cow.Crossref | GoogleScholarGoogle Scholar | 17360962PubMed |

Robinson, R. S., Hammond, A. J., Mann, G. E., and Hunter, M. G. (2008). A novel physiological culture system that mimics luteal angiogenesis. Reproduction 135, 405–413.
A novel physiological culture system that mimics luteal angiogenesis.Crossref | GoogleScholarGoogle Scholar | 18299434PubMed |

Robinson, R. S., Woad, K. J., Hammond, A. J., Laird, M., Hunter, M. G., and Mann, G. E. (2009). Angiogenesis and vascular function in the ovary. Reproduction 138, 869–881.
Angiogenesis and vascular function in the ovary.Crossref | GoogleScholarGoogle Scholar | 19786399PubMed |

Schams, D., and Berisha, B. (2004). Regulation of corpus luteum function in cattle: an overview. Reprod. Domest. Anim. 39, 241–251.
Regulation of corpus luteum function in cattle: an overview.Crossref | GoogleScholarGoogle Scholar | 15225277PubMed |

Schams, D., Kosmann, M., Berisha, B., Amselgruber, W. M., and Miyamoto, A. (2001). Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells. Exp. Clin. Endocrinol. Diabetes 109, 155–162.
Stimulatory and synergistic effects of luteinising hormone and insulin like growth factor 1 on the secretion of vascular endothelial growth factor and progesterone of cultured bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 11409298PubMed |

Seghezzi, G., Patel, S., Ren, C. J., Gualandris, A., Pintucci, G., Robbins, E. S., Shapiro, R. L., Galloway, A. C., Rifkin, D. B., and Mignatti, P. (1998). Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 141, 1659–1673.
Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis.Crossref | GoogleScholarGoogle Scholar | 9647657PubMed |

Shirakihara, T., Horiguchi, K., Miyazawa, K., Ehata, S., Shibata, T., Morita, I., Miyazono, K., and Saitoh, M. (2011). TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition. EMBO J. 30, 783–795.
TGF-beta regulates isoform switching of FGF receptors and epithelial–mesenchymal transition.Crossref | GoogleScholarGoogle Scholar | 21224849PubMed |

Spicer, L. J., and Stewart, R. E. (1996). Interactions among basic fibroblast growth factor, epidermal growth factor, insulin, and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors. Biol. Reprod. 54, 255–263.
Interactions among basic fibroblast growth factor, epidermal growth factor, insulin, and insulin-like growth factor-I (IGF-I) on cell numbers and steroidogenesis of bovine thecal cells: role of IGF-I receptors.Crossref | GoogleScholarGoogle Scholar | 8838024PubMed |

Strawn, L. M., McMahon, G., App, H., Schreck, R., Kuchler, W. R., Longhi, M. P., Hui, T. H., Tang, C., Levitzki, A., Gazit, A., Chen, I., Keri, G., Orfi, L., Risau, W., Flamme, I., Ullrich, A., Hirth, K. P., and Shawver, L. K. (1996). Flk-1 as a target for tumor growth inhibition. Cancer Res. 56, 3540–3545.
| 8758924PubMed |

Sugino, N., Kashida, S., Takiguchi, S., Karube, A., and Kato, H. (2000). Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. J. Clin. Endocrinol. Metab. 85, 3919–3924.
Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 11061557PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 17553902PubMed |

Vitorino, P., and Meyer, T. (2008). Modular control of endothelial sheet migration. Genes Dev. 22, 3268–3281.
Modular control of endothelial sheet migration.Crossref | GoogleScholarGoogle Scholar | 19056882PubMed |

Wang, Y., Chang, J., Chen, K. D., Li, S., Li, J. Y., Wu, C., and Chien, S. (2007). Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress. Proc. Natl Acad. Sci. USA 104, 8875–8879.
Selective adapter recruitment and differential signaling networks by VEGF vs. shear stress.Crossref | GoogleScholarGoogle Scholar | 17496149PubMed |

Woad, K. J., Hammond, A. J., Hunter, M., Mann, G. E., Hunter, M. G., and Robinson, R. S. (2009). FGF2 is crucial for the development of bovine luteal endothelial networks in vitro. Reproduction 138, 581–588.
FGF2 is crucial for the development of bovine luteal endothelial networks in vitro.Crossref | GoogleScholarGoogle Scholar | 19542253PubMed |

Woad, K. J., Hunter, M. G., Mann, G. E., Laird, M., Hammond, A. J., and Robinson, R. S. (2012). Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis. Reproduction 143, 35–43.
Fibroblast growth factor 2 is a key determinant of vascular sprouting during bovine luteal angiogenesis.Crossref | GoogleScholarGoogle Scholar | 21998077PubMed |

Yamashita, H., Kamada, D., Shirasuna, K., Matsui, M., Shimizu, T., Kida, K., Berisha, B., Schams, D., and Miyamoto, A. (2008). Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow. Mol. Reprod. Dev. 75, 1449–1456.
Effect of local neutralization of basic fibroblast growth factor or vascular endothelial growth factor by a specific antibody on the development of the corpus luteum in the cow.Crossref | GoogleScholarGoogle Scholar | 18213648PubMed |

Zimmermann, R. C., Hartman, T., Bohlen, P., Sauer, M. V., and Kitajewski, J. (2001). Preovulatory treatment of mice with anti-VEGF receptor 2 antibody inhibits angiogenesis in corpora lutea. Microvasc. Res. 62, 15–25.
Preovulatory treatment of mice with anti-VEGF receptor 2 antibody inhibits angiogenesis in corpora lutea.Crossref | GoogleScholarGoogle Scholar | 11421657PubMed |