Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

177 PERFORMANCE OF Gyr PREPUBERTAL HEIFERS IN IN VITRO EMBRYO PRODUCTION

P. M. S. Rosa A , A. J. R. Camargo B , R. V. Serapião B , L. S. A. Camargo C and C. S. Oliveira A
+ Author Affiliations
- Author Affiliations

A Embrapa Dairy Cattle, LRA-CESM, Valença, RJ, Brazil;

B PESAGRO-RIO, Niterói, RJ, Brazil;

C Embrapa Dairy Cattle, Juiz de Fora, MG, Brazil

Reproduction, Fertility and Development 28(2) 219-219 https://doi.org/10.1071/RDv28n2Ab177
Published: 3 December 2015

Abstract

Bovine in vitro embryo production is highly relevant for dairy systems in Brazil, and Gyr dams are commonly used as oocyte donors. The aim of this study was to evaluate the use of prepubertal Gyr heifers as oocyte donors, an alternative to anticipate reproduction of those animals. For that, 11 Gyr [4 prepubertal (PP) donors and 7 adult cows © donors] were used in ovum pickup (OPU) sessions. The PP cows presented an average of 282.5 kg and 26.75 months, and had never displayed oestrous. Non-lactating cows presenting an average of 492 kg and 136 months were selected for C. Five replicates were performed, totaling 27 OPU sessions (C-17, PP-10) and 2–3 sessions per animal. Follicular wave was synchronised by aspiration of follicles larger than 8 mm 96 h before OPU. Cumulus-oocyte complexes (COC) were classified accordingly to their quality in viable (G1, G2, and G3) or non-viable (G4). Viable oocytes were matured and fertilized, and the presumptive zygotes were cultured in SOF medium at 38.5°C and 5% CO2 in air. Cleavage rate was assessed 48 to 72 h post-insemination (hpi) and blastocyst rate at 168 hpi. Mean number of structures was analysed by t-test, and percentage of viable, G1, G2, G3, G4, cleavage, and blastocyst rates were compared among groups by Fisher’s exact test (GraphPadInstat, La Jolla, CA, USA; P = 0.05). Results are followed by standard error values. All procedures were approved by a local ethics committee. We found that despite higher (P < 0.05) numbers for both viable oocytes (PP: 15 ± 2.6; C: 6.11 ± 0.76) and total oocytes (PP: 23.70 ± 2.83; C: 8.82 ± 1.19) in the PP group, the rate of viable oocytes was similar (P > 0.05) among PP and C groups (PP: 61.5 ± 6.51%, C: 66.79 ± 3.79%). Mean numbers of G1, G2, G3, and G4 oocytes were higher (P < 0.05) in the PP group (G1 = 7.1 ± 1.18; G2 = 4.9 ± 1.74; G3 = 3.9 ± 1.09; G4 = 7.8 ± 1.38) than in the C group (G1 = 2.70 ± 0.740; G2 = 2.47 ± 0.44; G3 = 1.11 ± 0.31; G4 = 2.52 ± 0.39). However, the proportion was similar (P > 0.05) among PP and C groups (PP: G1 = 29.5 ± 4.21%; G2 = 19.5 ± 2.85%; G3 = 15.9 ± 13.5%; G4 = 35.1 ± 6.33%; and C: G1 = 27.24 ± 4.44%; G2 = 29.60 ± 5.08%; G3 = 12.34 ± 3.01%, G4 = 30.79 ± 4.93%). Cleavage rate (PP: 91.3 ± 17.94%; C: 74.09 ± 4.65%), mean blastocyst number per OPU session (PP: 3.3 ± 1.29; C: 1.76 ± 0.28), and blastocyst rate (PP: 19.74 ± 7.40%; C: 27.03% ± 4.07%) were similar (P > 0.05) among groups. We conclude that prepubertal heifers presented increased numbers of viable oocytes per OPU session, but blastocyst yield was similar to adult cows. This data suggests that prepubertal Gyr heifers can be used as oocyte donors.

Support from FAPERJ and Embrapa is acknowledged.