40 TRICHOSTATIN A TREATMENT EFFECTS ON IN VITRO DEVELOPMENT OF INTERSPECIES NUCLEAR TRANSFER CAT EMBRYOS DEPEND ON RECIPIENT CYTOPLASM SPECIES
L. T. K. Do A , Y. Sato A , M. Taniguchi A and T. Otoi ALaboratory of Animal Reproduction, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
Reproduction, Fertility and Development 27(1) 113-113 https://doi.org/10.1071/RDv27n1Ab40
Published: 4 December 2014
Abstract
The developmental ability of interspecies somatic cell nuclear transfer (iSCNT) embryos decreases as the taxonomic distance between the donor and recipient species increases. Treatment of cat iSCNT embryos using bovine oocytes with 50 nM of trichostatin A (TSA) improves in vitro embryonic development (Wittayarat et al. 2013 Cell. Reprogram. 15, 301–308). This study investigated whether the TSA treatment effects differ between the development of cat iSCNT embryos reconstructed with porcine and bovine oocytes. Porcine and bovine cumulus-oocyte complexes were in vitro matured for 44 h and 24 h, respectively. After cumulus cell removal, enucleation was performed by aspiration of the metaphase II plate and the first polar body using a piezo-driven pipette. A cat fibroblast cell was then injected into cytoplasm of successfully enucleated oocyte. Reconstructed cybrids were electrically activated by a single 1.5 kV cm–1 pulse for 100 µs (pig-cat embryos), or a 2.3 kV cm–1 pulse for 30 µs (cow-cat embryos). Pig-cat and cow-cat embryos were cultured in porcine zygote medium (PZM)-5 and modified synthetic oviducal fluid medium (mSOF), respectively. After electrical activation, pig-cat and cow-cat embryos were cultured in medium supplemented with 5 µg mL–1 cytochalasin B + 50 nM TSA (TSA group) or without TSA (control group), and the cow-cat embryo medium was also supplemented with 10 µg mL–1 cycloheximide. After 2 h, TSA-treated pig-cat and cow-cat embryos were incubated in medium supplemented with TSA for 22 h, followed by 48 h incubation without TSA. Pig-cat and cow-cat control embryos were cultured in medium without TSA for 70 h after activation. Then, all pig-cat and cow-cat embryos were cultured in porcine blastocyst medium (PBM) or mSOF medium supplemented with 5% fetal bovine serum, respectively, for 5 additional days. Four to seven replicates were performed for each experiment. Data were analysed using Student's t-test. For pig-cat embryos, no difference was observed in cleavage rates between both groups, but development to the blastocyst stage was higher in the pig control group (n = 147, 8.0%) than that of pig TSA group (n = 131, 0.7%; P < 0.05). In contrast, development to the blastocyst stage in cow-cat embryos was not observed in the cow control group (n = 125, 0%), but it was observed in cow TSA group (n = 136, 3.7%). These results indicate that TSA treatment effects are species-specific, but those effects remain to be clarified.