Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

265 TESTICULAR DEGENERATION AFFECTED PLASMA, ACROSOMAL AND MITOCHONDRIAL MEMBRANE INTEGRITY, AND DNA FRAGMENTATION IN RAM SPERMATOZOA

M. Bianchi Rodrigues Alves A , A. Furugen Cesar de Andrade A , R. Paes de Arruda A , L. Batissaco A , R. Lançoni A , M. Andrade Torres A , G. Mouro Ravagnani A , S. A. Florez-Rodriguez A , B. Marcelle Martins de Oliveira A , V. Vellone A and E. Carla Carvalho Celeghini A
+ Author Affiliations
- Author Affiliations

Center of Biotechnology in Animal Reproduction, Department of Animal Reproduction, Faculty of Veterinary and Animal Science, Pirassununga, SP, Brazil

Reproduction, Fertility and Development 27(1) 222-222 https://doi.org/10.1071/RDv27n1Ab265
Published: 4 December 2014

Abstract

Testicular degeneration, an important cause of male infertility, adversely affects sperm motility and morphology. However, few studies describe effects on integrity of plasma and acrosomal membranes, mitochondrial membrane potential, and DNA fragmentation; therefore, they were evaluated in the present study. Testicular degeneration was induced in 17 White Dorper rams (scrotal insulation for 72 h). Semen was collected (artificial vagina) twice before insulation and twice thereafter (15-day intervals between post-insulation collections). Sperm motility and morphology were analysed by SCA software (Sperm Class Analyser®, MICROPTIC®, Barcelona, Spain) and differential interference contrast microscopy (DIC, model 80i, Nikon, Tokyo, Japan), respectively. Membrane integrity and potential were assessed with fluorescent probes: Hoescht 33342, propidium iodide, FITC-PSA, and JC-1 (Celeghini et al. 2010 Arq. Bras. Med. Vet. Zootec. 62, 536–543) and imaged with fluorescence microscopy (Nikon Model 80i, Nikon, Tokyo, Japan). Fragmentation of DNA was evaluated with a Halomax® kit (Halotech® DNA, Madrid, Spain). Data were analysed with Statview software (Stat View 1998, SAS Institute Inc., Cary, NC, USA). Data obtained from the periods (before × after insulation) were evaluated by analysis of variance (ANOVA) and means were compared using Tukey's test. Total motility (before: 87.53 ± 1.21%; after: 46.53 ± 4.46%) and progressive motility (before: 58.64 ± 2.00%; after: 31.33 ± 3.82%) were reduced (P < 0.01) by scrotal insulation, as were sperm major defects (before: 10.64 ± 1.65%; after: 54.30 ± 3.67%) and total defects (before: 20.50 ± 2.40%; after: 63.85 ± 3.41%; P < 0.0001). Sperm with intact plasma and acrosomal membranes and high mitochondrial potential (PIAIH) decreased (P < 0.0001) after insulation. In that regard, 53.19 ± 2.20 and 28.48 ± 3.48% of sperm were classified as PIAIH before v. after insulation, respectively. Furthermore, plasma membrane integrity, acrosome membrane integrity, and high mitochondrial potential were assessed independently. The quantity of plasma membrane integrity cells (before: 62.01 ± 2.07%; after: 33.92 ± 3.94%), acrosome membrane integrity cells (before: 57.17 ± 2.30%; after: 31.47 ± 3.77%), and high mitochondrial potential cells (before: 85.72 ± 1.42%; after: 57.28 ± 3.12%) were also reduced (P < 0.0001) after insulation. Likewise, DNA integrity decreased (P = 0.002) from 98.87 ± 0.26% before insulation to 91.88 ± 2.6% afterward. In conclusion, sperm plasma and acrosomal membrane integrity, mitochondrial membrane potential, and DNA fragmentation were adversely affected by testicular degeneration in rams induced by scrotal insulation.

Research was supported by FAPESP process 2012/00040-0 and 2011/16744-3.