123 CHANGES IN EXPRESSION OF GENES ASSOCIATED WITH GENETIC VARIATION IN PRE-IMPLANTATION DEVELOPMENT OF THE BOVINE EMBRYO
M. S. Ortega A , J. B. Cole B , T. S. Sonstegard B and P. J. Hansen AA Department of Animal Sciences, University of Florida, Gainesville, FL, USA;
B Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
Reproduction, Fertility and Development 26(1) 175-175 https://doi.org/10.1071/RDv26n1Ab123
Published: 5 December 2013
Abstract
The objective was to identify patterns of expression during the pre-implantation period of several genes associated with genetic variation in fertility (CWC15) or development to the blastocyst stage (C1QB, MON1B, PARM1, PCCB, PMM2, TBC1D24, and WBP1). These genes are involved in cellular processes such as mRNA splicing, immune protection, fatty acid oxidation, resistance to apoptosis, glycoprotein synthesis, and intracellular transport. Embryos were produced in vitro from slaughterhouse oocytes and semen using a mix of Bos taurus and Bos indicus cows and bulls. Pools of 40 matured oocytes or embryos at the 2-cell [27–31 h post-insemination (hpi)], 3- to 4-cell (46–52 hpi), 5- to 8-cell (49–59 hpi), 9- to 16-cell (72–75 hpi), morula (120–123 hpi), and blastocyst (168–171 hpi) stages were collected. The RNA was purified and synthesised into cDNA for real-time qPCR analysis. The YWHAZ, GAPDH, and SDHA were used as steady-state controls of expression. A total of 5 pools were analysed for each of the 6 stages. The C1QB was not detected at any stage; however, transcript amounts for the other genes were affected by stage of development (P < 0.05). The WBP1 remained low from the oocyte to the 5- to 8-cell stage (fold-change relative to matured oocytes: 1.0 ± 0.2 v. 1.4 ± 0.2), increased at the 9- to 16-cell stage (14.8 ± 0.2), and decreased to the blastocyst stage (7.1 ± 0.2). The expression pattern of PARM1 was similar, with greatest expression at the 9- to 16-cell stage. In contrast, expression of PMM2 and TBC1D24 was highest at the 2-cell stage and decreased at the morula and blastocyst stages. Expression of CWC15, MON1B, and PCCB decreased steadily from the oocyte to the blastocyst stage. Given that the major round of embryonic genome activation occurs at the 8- to 16-cell stage, it is possible that PARM1 and WBP1 play important roles around this time. The PMM2 and TBC1D24 may represent genes activated before the 8- to 16-cell stage. The CWC15 has been identified as a lethal gene; results suggest lethality occurs after the blastocyst stage. Further research will clarify the role and importance of these genes in the early development of the bovine embryo.
The authors acknowledge support from AFRI Grant No. 2013–68004–20365 from USDA NIFA.