Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

238 KNOCKING DOWN OF THYROID HORMONE RECEPTORS INHIBITS DEVELOPMENT OF EARLY BOVINE EMBRYOS

N. Y. Rho A , F. A. Ashkar A , T. Revay A , P. Madan A and W. A. King A
+ Author Affiliations
- Author Affiliations

University of Guelph, Guelph, Ontario, Canada

Reproduction, Fertility and Development 25(1) 267-267 https://doi.org/10.1071/RDv25n1Ab238
Published: 4 December 2012

Abstract

Thyroid hormones (TH) play an important role in the physiology of vertebrates, ranging from the regulation of metabolic processes to cell proliferation, differentiation, and embryo development. We have previously shown a beneficial effect of supplementing TH in in vitro embryo production media. Recently, detection of TH receptors (TR) in oocytes and early stages of pre-implantation embryos indicated a possible regulatory role for TH in these stages (unpublished data). The objective of this study was to investigate the importance of TR expression in the pre-attachment bovine embryo in vitro. Bovine embryos, produced by standard in vitro embryo production procedures, were microinjected at the zygote stage with small interfering RNA (siRNA) specifically designed for knocking down either TR-α or TR-β. In addition, groups of zygotes were microinjected with scrambled siRNA (SI) or were not injected (NI), and these groups served as controls. Embryo developmental rates were assessed using light microscopy for blastocyst formation rates and expression of TR messenger RNA (mRNA) transcripts at the blastocyst stage was assessed by quantitative PCR across all groups. Expression of TR mRNA was normalized against glyceraldehyde 3-phosphate dehydrogenase, H2a, and 18S as reference genes. There was a significant decrease in blastocyst formation rates in both embryo groups injected with either TR-α (P < 0.002) and TR-β (P < 0.001) siRNA compared with the NI and SI groups. Moreover, the TR-β knockdown group exhibited a lower developmental rate than the TR-α knockdown group, which indicates a stronger inhibitory role for TR-β. Quantification of the level of TR mRNA expression in four groups normalized with three different reference genes shows a consistent significant reduction in the levels of TR-α (P < 0.05) and TR-β (P < 0.02) mRNA transcripts compared with the NI and SI groups. However, TR-β expression was inhibited more than was TR-α expression. In conclusion, the results indicate that knocking down either TR-α or TR-β restrains embryo development. This suggests that TH play a vital role in the regulation of embryo development through their receptors during bovine early embryogenesis. The specific role of each of these receptors and their mechanism of action in mediating development needs to be further elucidated.

Funding was provided by CRC, NSERC, and the EmbryoGENE network.