Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

1 XENOGRAFTING OF ADULT MAMMALIAN TESTIS TISSUE

L. Arregui, R. Rathi, W. Zeng, A. Honaramooz, M. Gomendio, E.R.S Roldan and I. Dobrinski

Reproduction, Fertility and Development 19(1) 119 - 119
Published: 12 December 2006

Abstract

Testis tissue grafting presents an option for preservation of genetic material when sperm recovery is not possible. Grafting of testis tissue from sexually immature males to immunodeficient mice results in germ cell differentiation and production of fertilization-competent sperm from different mammalian species (Honaramooz et al. 2002 Nature 418, 778–781). However, the efficiency of testis tissue xenografting from adult donors has not been critically evaluated. Spermatogenesis was arrested at meiosis in grafts from mature horses (Rathi et al. 2006 Reproduction 131, 1091–1098) and hamsters (Schlatt et al. 2002 Reproduction 124, 339–346), and no germ cell differentiation occurred in xenografts of adult human testis tissue (Schlatt et al. 2006 Hum. Reprod. 21, 384–389). The objective of this study was to investigate survival and germ cell differentiation of testis xenografts from sexually mature donors of different species. Small fragments of testis tissue from 10 donor animals of 5 species were grafted under the back skin of immunodeficient, castrated male mice (n = 37, 2–6/donor). Donors were pig (8 months old), goat (18 months old and 4 years old) (n = 2), bull (3 years old), donkey (13 months old), and rhesus monkey (3, 6, 11, and 12 years old). At the time of grafting, donor tissue contained elongated spermatids, albeit to different degrees (>75% of seminiferous tubules in testis tissue from pig, goat, bull, and 6–12-year-old monkeys, and 33 or 66% of tubules in tissue from donkey or 3-year-old monkey, respectively). Grafts were recovered <12 weeks (n = 14 mice), 12–24 weeks (n = 16 mice), and >24 weeks (n = 7 mice) after grafting and classified histologically as completely degenerated (no tubules found), degenerated tubules (only hyalinized seminiferous tubules observed), or according to the most advanced type of germ cell present. Grafts from pig, goat, bull, and 6–12-year-old monkeys contained >60% degenerated tubules or were completely degenerated at all time points analyzed. In contrast, in grafts from the 3-year-old monkey, only 18% of tubules were degenerated, 14% contained Sertoli cells only, 64% contained meiotic, and 4% haploid germ cells at 24 weeks after grafting. Similarly, donkey testis grafts recovered 12–24 weeks after grafting contained <2% degenerated tubules, 46% of tubules had Sertoli cells only, 45% contained meiotic, and 7% haploid germ cells. These results show that survival and differentiation of germ cells in testis grafts from sexually mature mammalian donors is poor. However, better graft survival and maintenance of spermatogenesis occurred in donor tissue from donkey and 3-year-old monkey that were less mature at the time of grafting. Therefore, species and age-related differences appear to exist with regard to germ cell survival and differentiation in xenografts from adult donors.

This work was supported by USDA/CSREES 03-35203-13486, NIH/NCRR 5-R01-RR17359-05, the Spanish Ministry of Education, and Science (BES-2004-4112).

https://doi.org/10.1071/RDv19n1Ab1

© CSIRO 2006

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email