Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

208 CYTOLYTIC ANALYSIS AND NUCLEAR TRANSFER OF hCD46-TRANSGENIC PORCINE EMBRYONIC GERM CELLS TO DEVELOP AND IN VITRO MODEL OF XENOTRANSPLANTATION

J. Y. Won, K. S. Ahn, S. Y. Heo, J. H. Kang and H. Shim

Reproduction, Fertility and Development 18(2) 212 - 212
Published: 14 December 2005

Abstract

Pigs are considered the most likely source of organs for xenotransplantation due to their anatomical and physiological similarities to humans. Production of transgenic pigs including addition of human complement-regulatory protein genes and deletion of alpha-1,3-galactosyl transferase gene may overcome hyperacute rejection (HAR), the first and currently the most critical immunological hurdle in the development of xenogeneic organs for human transplantation. However, even after resolving HAR in pig-to-human xenotransplantation, a series of other transgenic pigs may be required to alleviate subsequent acute and chronic rejection and incompatibility of porcine proteins to human counterparts. The production of transgenic pigs is not only labor-intensive, time-consuming, and costly, but also the usefulness of such pigs in transplantation to humans is unpredictable. For these reasons, development of a reliable in vitro procedure to pre-evaluate effectiveness of the transgenic approach would be beneficial. This study was preformed to establish an in vitro model of xenotransplantation using porcine embryonic germ (EG) cells, undifferentiated stem cells derived from culture of primordial germ cells. Porcine EG cells were maintained in feeder-free state in DMEM containing 15% (v/v) fetal bovine serum and 1000 units/mL leukemia inhibitory factor. Human complement down-regulator hCD46 (also known as MCP, membrane cofactor protein) gene under the regulation of cytomegalovirus promoter was introduced into porcine EG cells. Transfected cells were selected by antibiotic treatment and confirmed by PCR. To test the resistance of hCD46-transgenic EG cells to human xenoreactive natural antibody and complement, EG cells were cultured for 1.5 days in DMEM containing 15% (v/v) normal human serum. The treatment with human serum did not affect the survival of hCD46-transgenic EG cells, whereas with the same treatment approximately one half of non-transfected EG cells failed to survive (P < 0.01). Transgenic EG cells presumably capable of overcoming HAR were used as nuclear donors for subsequent transfer of nuclei into enucleated oocytes. Among 110 reconstituted oocytes, 19 (17.3%) developed to the blastocyst stage. Analysis of individual nuclear transfer embryos by PCR indicated that 89.5% (17/19) of embryos contained transgene hCD46. The PCR-negative embryos might be due to an incomplete antibiotic selection of cells after transfection. Overall, the results of the present study demonstrate that the cell culture-based model of xenotransplantation may validate the usefulness of particular transgenic pigs prior to actual production. Further experiments on differentiation of transgenic EG cells into various cell types, cytolytic analysis of such cells to assess efficiency of xenotransplantation, and subsequent production and transfer of transgenic clone embryos to recipients may provide a useful new procedure to accelerate xenotransplantation research.

https://doi.org/10.1071/RDv18n2Ab208

© CSIRO 2005

Committee on Publication Ethics

Export Citation Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email